• Title/Summary/Keyword: predictive method

Search Result 1,555, Processing Time 0.032 seconds

Design of generalized predictive controller for discrete-time chaotic systems (아산치 혼돈 시스템의 제어를 위한 일반형 예측 제어기의 설계)

  • 박광성;주진만;박진배;최윤호;윤태성
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.11
    • /
    • pp.53-62
    • /
    • 1997
  • In this study, a controller design method is proposed for controlling the discrete-time chaotic systems efficiently. The proposed control method is based on Generalized Predictive Control and uses NARMAX models as controlled models. In order to evaluate the performance of the proposed method, a proposed controller is applied to discrete-time chaotic systems, and then the control performance and initial sensitivity of the proposed controller are compared with those of the conventional model-based controler through computer simulations. Through simulations results, it is shown that the control performance of the proposed controller is superior to that of the conventional model-based controller and shown that the peorposed controller is less sensitive to initial values of discrete-time chaotic systems in comparison with the conventional model-based controller.

  • PDF

An adaptive predictive control of distillation process using bilinear model (쌍일차 모델을 이용한 증류공정의 적응예측제어)

  • Lo, Kyun;Yeo, Yeong-Koo;Song, Hyung-Keun;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.99-104
    • /
    • 1991
  • An adaptive predictive control method for SISO and MIMO plants is proposed. In this method, future predictions of process output based on a bilinear CARIMA model are used to calculate the control input. Also, a classical recursive adaptation algorithm, equation error method, is used to decrease the uncertainty of the process model. As a result of the application on distillation process, the ability of the set-point tracking and the disturbance rejection is acceptable to apply to the industrial distillation processes.

  • PDF

Model Predictive Control with Variable Sampling Time for Improving Power Quality of PMSG-based Wind Energy Conversion System in DC Microgrid (DC Microgrid 연계형 PMSG 기반 풍력에너지 변환 시스템의 전력 품질 개선을 위한 가변 샘플링 시간이 적용된 모델예측제어)

  • Lee, Jae-Hyung;Choo, Kyoung-Min;Jeong, Won-Sang;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.180-181
    • /
    • 2019
  • This paper proposes a method for improving the power quality of PMSG-based wind energy conversion system based on model predictive control in DC Microgrid. The MPC has a fast dynamic response. However, a large torque ripple deteriorating power quality is generated by a large and fixed switching period. On the other hand, the proposed method improves the power quality by setting the sampling time having zero torque error. The validity of the proposed method is verified through PSIM simulation.

  • PDF

Performance Evaluation of a Feature-Importance-based Feature Selection Method for Time Series Prediction

  • Hyun, Ahn
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.1
    • /
    • pp.82-89
    • /
    • 2023
  • Various machine-learning models may yield high predictive power for massive time series for time series prediction. However, these models are prone to instability in terms of computational cost because of the high dimensionality of the feature space and nonoptimized hyperparameter settings. Considering the potential risk that model training with a high-dimensional feature set can be time-consuming, we evaluate a feature-importance-based feature selection method to derive a tradeoff between predictive power and computational cost for time series prediction. We used two machine learning techniques for performance evaluation to generate prediction models from a retail sales dataset. First, we ranked the features using impurity- and Local Interpretable Model-agnostic Explanations (LIME) -based feature importance measures in the prediction models. Then, the recursive feature elimination method was applied to eliminate unimportant features sequentially. Consequently, we obtained a subset of features that could lead to reduced model training time while preserving acceptable model performance.

Predictive Coding Methods in DCT Domain for Image Data Compression (영상 압축 부호화를 위한 DCT영역에서의 예측 부호화 방법)

  • Lee, Sang-Hee;Kim, Jae-Kyoon
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.8
    • /
    • pp.86-95
    • /
    • 1998
  • Intra-frame video compression, which cannot make use of temporal predictions, requires much higher bit rates compared with inter-frame schemes. In order to reduce bit rates, intra-frame predictive coding methods in DCT domain have been studied especially within the framework of the MPEG-4 video coding standard currently being developed. In this paper, we propose novel intra-frame predictive coding methods in DCT domain with the marginal complexity increase over the conventional methods . The proposed methods consist of a DC coefficient prediction method and two AC coefficient prediction methods. The proposed methods consist of a DC coefficient prediction method and two AC coefficient prediction methods. The proposed DC coefficient prediction method makes it possible to adaptively select the prediction directions without overhead bits, by comparing gradients of DC coefficients from neighboring blocks. As the AC coefficient prediction methods, first, we present an effective method which can improve the prediction directions of the MPEG-4 scheme by considering the DC coefficient of the current block to be coded. And, we present another effective method that decision on the prediction is carried out for each AC coefficient. Simulation results show that substantial bit savings can be achieved by the proposed methods.

  • PDF

Predictive Model of Micro-Environment in a Naturally Ventilated Greenhouse for a Model-Based Control Approach (자연 환기식 온실의 모델 기반 환기 제어를 위한 미기상 환경 예측 모형)

  • Hong, Se-Woon;Lee, In-Bok
    • Journal of Bio-Environment Control
    • /
    • v.23 no.3
    • /
    • pp.181-191
    • /
    • 2014
  • Modern commercial greenhouse requires the use of advanced climate control system to improve crop production and to reduce energy consumption. As an alternative to classical sensor-based control method, this paper introduces a model-based control method that consists of two models: the predictive model and the evaluation model. As a first step, this paper presents straightforward models to predict the effect of natural ventilation in a greenhouse according to meteorological factors, such as outdoor air temperature, soil temperature, solar radiation and mean wind speed, and structural factor, opening rate of roof ventilators. A multiple regression analysis was conducted to develop the predictive models on the basis of data obtained by computational fluid dynamics (CFD) simulations. The output of the models are air temperature drops due to ventilation at 9 sub-volumes in the greenhouse and individual volumetric ventilation rate through 6 roof ventilators, and showed a good agreement with the CFD-computed results. The resulting predictive models have an advantage of ensuring quick and reasonable predictions and thereby can be used as a part of a real-time model-based control system for a naturally ventilated greenhouse to predict the implications of alternative control operation.

Reconfiguration Control Using LMI-based Constrained MPC (선형행렬부등식 기반의 모델예측 제어기법을 이용한 재형상 제어)

  • Oh, Hyon-Dong;Min, Byoung-Mun;Kim, Tae-Hun;Tahk, Min-Jea;Lee, Jang-Ho;Kim, Eung-Tai
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • In developing modern aircraft, the reconfiguration control that can improve the safety and the survivability against the unexpected failure by partitioning control surfaces into several parts has been actively studied. This paper deals with the reconfiguration control using model predictive control method considering the saturation of control surfaces under the control surface failure. Linearized aircraft model at trim condition is used as the internal model of model predictive control. We propose the controller that performs optimization using LMI (linear matrix inequalities) based semi-definite programming in case that control surface saturation occurs, otherwise, uses analytic solution of the model predictive control. The performance of the proposed control method is evaluated by nonlinear simulation under the flight scenario of control surface failure.

Validity of predictive equations for resting energy expenditure in Korean non-obese adults

  • Ndahimana, Didace;Choi, Yeon-Jung;Park, Jung-Hye;Ju, Mun-Jeong;Kim, Eun-Kyung
    • Nutrition Research and Practice
    • /
    • v.12 no.4
    • /
    • pp.283-290
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Indirect calorimetry is the gold-standard method for the measurement of resting energy expenditure. However, this method is time consuming, expensive, and requires highly trained personnel. To overcome these limitations, various predictive equations have been developed. The objective of this study was to assess the validity of predictive equations for resting energy expenditure (REE) in Korean non-obese adults. SUBJECTS/METHODS: The present study involved 109 participants (54 men and 55 women) aged between 20 and 64 years. The REE was measured by indirect calorimetry. Nineteen REE equations were evaluated for validity, by comparing predicted and measured REE results. Predictive equation accuracy was assessed by determining percent bias, root mean squared prediction error (RMSE), and percentage of accurate predictions. RESULTS: The measured REE was significantly higher in men than in women (P < 0.001), but the difference was not significant after adjusting for body weight (P > 0.05). The equation developed in this study had an accuracy rate of 71%, a bias of 0%, and an RMSE of 155 kcal/day. Among published equations, the $FAO_{weight}$ equation gave the highest accuracy rate (70%), along with a bias of -4.4% and an RMSE of 184 kcal/day. CONCLUSIONS: The newly developed equation provided the best accuracy in predicting REE for Korean non-obese adults. Among the previously published equations, the $FAO_{weight}$ equation showed the highest overall accuracy. Regardless, at an individual level, the equations could lead to inaccuracies in a considerable number of subjects.

A Study on Wavelet Neural Network Based Generalized Predictive Control for Path Tracking of Mobile Robots (이동 로봇의 경로 추종을 위한 웨이블릿 신경 회로망 기반 일반형 예측 제어에 관한 연구)

  • Song, Yong-Tae;Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.457-466
    • /
    • 2005
  • In this paper, we propose a wavelet neural network(WNN) based predictive control method for path tracking of mobile robots with multi-input and multi-output. In our control method, we use a WNN as a state predictor which combines the capability of artificial neural networks in learning processes and the capability of wavelet decomposition. A WNN predictor is tuned to minimize errors between the WNN outputs and the states of mobile robot using the gradient descent rule. And control signals, linear velocity and angular velocity, are calculated to minimize the predefined cost function using errors between the reference states and the predicted states. Through a computer simulation for the tracking performance according to varied track, we demonstrate the efficiency and the feasibility of our predictive control system.

Computational approaches for prediction of protein-protein interaction between Foot-and-mouth disease virus and Sus scrofa based on RNA-Seq

  • Park, Tamina;Kang, Myung-gyun;Nah, Jinju;Ryoo, Soyoon;Wee, Sunghwan;Baek, Seung-hwa;Ku, Bokkyung;Oh, Yeonsu;Cho, Ho-seong;Park, Daeui
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.2
    • /
    • pp.73-83
    • /
    • 2019
  • Foot-and-Mouth Disease (FMD) is a highly contagious trans-boundary viral disease caused by FMD virus, which causes huge economic losses. FMDV infects cloven hoofed (two-toed) mammals such as cattle, sheep, goats, pigs and various wildlife species. To control the FMDV, it is necessary to understand the life cycle and the pathogenesis of FMDV in host. Especially, the protein-protein interaction between FMDV and host will help to understand the survival cycle of viruses in host cell and establish new therapeutic strategies. However, the computational approach for protein-protein interaction between FMDV and pig hosts have not been applied to studies of the onset mechanism of FMDV. In the present work, we have performed the prediction of the pig's proteins which interact with FMDV based on RNA-Seq data, protein sequence, and structure information. After identifying the virus-host interaction, we looked for meaningful pathways and anticipated changes in the host caused by infection with FMDV. A total of 78 proteins of pig were predicted as interacting with FMDV. The 156 interactions include 94 interactions predicted by sequence-based method and the 62 interactions predicted by structure-based method using domain information. The protein interaction network contained integrin as well as STYK1, VTCN1, IDO1, CDH3, SLA-DQB1, FER, and FGFR2 which were related to the up-regulation of inflammation and the down-regulation of cell adhesion and host defense systems such as macrophage and leukocytes. These results provide clues to the knowledge and mechanism of how FMDV affects the host cell.