• Title/Summary/Keyword: predictive method

Search Result 1,555, Processing Time 0.036 seconds

Estimation and Prediction-Based Connection Admission Control in Broadband Satellite Systems

  • Jang, Yeong-Min
    • ETRI Journal
    • /
    • v.22 no.4
    • /
    • pp.40-50
    • /
    • 2000
  • We apply a "sliding-window" Maximum Likelihood(ML) estimator to estimate traffic parameters On-Off source and develop a method for estimating stochastic predicted individual cell arrival rates. Based on these results, we propose a simple Connection Admission Control(CAC)scheme for delay sensitive services in broadband onboard packet switching satellite systems. The algorithms are motivated by the limited onboard satellite buffer, the large propagation delay, and low computational capabilities inherent in satellite communication systems. We develop an algorithm using the predicted individual cell loss ratio instead of using steady state cell loss ratios. We demonstrate the CAC benefits of this approach over using steady state cell loss ratios as well as predicted total cell loss ratios. We also derive the predictive saturation probability and the predictive cell loss ratio and use them to control the total number of connections. Predictive congestion control mechanisms allow a satellite network to operate in the optimum region of low delay and high throughput. This is different from the traditional reactive congestion control mechanism that allows the network to recover from the congested state. Numerical and simulation results obtained suggest that the proposed predictive scheme is a promising approach for real time CAC.

  • PDF

Nonlinear control of structure using neuro-predictive algorithm

  • Baghban, Amir;Karamodin, Abbas;Haji-Kazemi, Hasan
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1133-1145
    • /
    • 2015
  • A new neural network (NN) predictive controller (NNPC) algorithm has been developed and tested in the computer simulation of active control of a nonlinear structure. In the present method an NN is used as a predictor. This NN has been trained to predict the future response of the structure to determine the control forces. These control forces are calculated by minimizing the difference between the predicted and desired responses via a numerical minimization algorithm. Since the NNPC is very time consuming and not suitable for real-time control, it is then used to train an NN controller. To consider the effectiveness of the controller on probability of damage, fragility curves are generated. The approach is validated by using simulated response of a 3 story nonlinear benchmark building excited by several historical earthquake records. The simulation results are then compared with a linear quadratic Gaussian (LQG) active controller. The results indicate that the proposed algorithm is completely effective in relative displacement reduction.

A Study on Development of ATCS for Automated Stacking Crane using Neural Network Predictive Control

  • Sohn, Dong-Seop;Kim, Sang-Ki;Min, Jeong-Tak;Lee, Jin-Woo;Lee, Kwon-Soon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.346-349
    • /
    • 2003
  • For a traveling crane, various control methods such as neural network predictive control and TDOFPID(Two Degree of Freedom Proportional Integral Derivative) are studied. So in this paper, we proposed improved navigation method to reduce transfer time and sway with anti-collision path for avoiding collision in its movement to the finial coordinate. And we constructed the NNPPID(Neural Network Predictive PID) controller to control the precise move and speedy navigation. The proposed predictive control system is composed of the neural network predictor, TDOFPID controller, and neural network self-tuner. We analyzed ASC(Automated Stacking Crane) system and showed some computer simulations to prove excellence of the proposed controller than other conventional controllers.

  • PDF

Fuzzy Model Based Generalized Predictive Control for Nonlinear System (비선형 시스템을 위한 퍼지모델 기반 일반예측제어)

  • Lee, Chul-Heui;Seo, Seon-Hak
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.697-699
    • /
    • 2000
  • In this paper, an extension of model predictive controller for nonlinear process using Takagi-Sugeno(TS) fuzzy model is proposed Since the consequent parts of TS fuzzy model comprise linear equations of input and output variables. it is locally linear, and the Generalized Predictive Control(GPC) technique which has been developed to control Linear Time Invariant(LTI) plants, can be extended as a parallel distributed controller. Also fuzzy soft constraints are introduced to handle both equality and inequality constraints in a unified form. So the traditional constrained GPC can be transferred to a standard fuzzy optimization problem. The proposed method conciliates the advantages of the fuzzy modeling with the advantages of the constrained predictive control, and the degree of freedom is increased in specifying the desired process behavior.

  • PDF

Predictive control based partial switching PFC converter for achieving high efficiency (고효율 구현을 위한 예측제어 기반 부분 스위칭 PFC 컨버터)

  • Choi, Yeong-Jun;Kim, Tae-Jin;Kim, Rae-Young
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.1-2
    • /
    • 2014
  • In this paper the partial switching PFC converter which is based on predictive control is proposed. In terms of satisfying the harmonic standard, the predictive control shows a similar performance to the conventional average current mode control PFC in the normal input condition. Moreover, the current harmonic characteristic is insensitive to the distorted input voltage. With predictive control method, novel on-line partial switching strategy is suggested in this paper. Depending on the operating condition, the partial switching PFC converter can boost its output voltage. Also when its efficiency needs to be improved, according to load condition, the partial switching can be achieved. The proposed strategy is proved by the results of FFT and the loss analysis using PSIM 9.0.

  • PDF

Design of Model Predictive Controller for Water Level control in the Steam Generator of a nuclear Power Plants (증기 발생기 수위제어를 위한 모델예측제어기 설계)

  • 손덕현;이창구
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.8
    • /
    • pp.376-383
    • /
    • 2001
  • Factors leading to poor control of the steam generator in a nuclear power plant are nonminimum phase characteristics, unreliable of flow measurements and nonlinear characteristics, which increase more at low power(below 20%) operation. And the study of problems for water level control in the steam generator is that design water level controller only power renge, not entire. This paper introduces a model predictive control(MPC) algorithm for solving poor control factors and quadratic programming(QP) for solving input constraints. Also presents the design method of stable model predictive controller in the entire power range. The simulation results show the efficiency of proposed MPC controller by comparing with PI controller, and effect of the design parameters.

  • PDF

A Model Predictive Controller for The Water Level of Nuclear Steam Generators

  • Na, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.102-110
    • /
    • 2001
  • In this work, the model predictive control method was applied to a linear model and a nonlinear model of steam generators. The parameters of a linear model for steam generators are very different according to the power levels. The model predictive controller was designed for the linear steam generator model at a fixed power level. The proposed controller at the fixed power level showed good performance for any other power levels by designed changing only the input-weighting factor. As the input-weighting factor usually increases, its relative stability does so. The steam generator has some nonlinear characteristics. Therefore, the proposed algorithm has been implemented for a nonlinear model of the nuclear steam generator to verify its real performance and also, showed good performance.

  • PDF

Bilinear Model Predictive Control for Grade Change Operations in Paper Mills (지종교체 공정의 Bilinear 모델 예측제어)

  • Choo, Yeon-Uk;Yeo, Yeong-Koo;Kang, Hong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.1 s.109
    • /
    • pp.61-66
    • /
    • 2005
  • The grade change operations In paper mills exhibit inherent nonlinear dynamic characteristics. For this reason, the conventional model predictive control techniques based on linear process models are not adequate for the grade change operations. In this paper, a bilinear model for the nonlinear grade change processes was presented first and optimal input variables were calculated by using one-step-ahead predictive control method. Numerical simulations showed that the control performance lied within acceptable range and that the bilinear model predictive control scheme was highly promising control strategy for the grade change operations.

A speed predictive control of the AC servo motor using DSP processor (DSP를 사용한 AC 서보 모터의 속도 예측 제어)

  • 김진환
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.7
    • /
    • pp.22-28
    • /
    • 1998
  • This paper includes AC servo motor speed control usig the predictive control strategy. Generally, AC servo motor control should have the fast response characteristics. For the issue, sliding mode control and PID control have been applied. However, the former has the speed ripple response due to the chattering and the latter requires the many trial efforts. Originally, the predictive control which has been used in process control area does not need the priori knowledge for the application system and it is easy to compute the optimal gain with the prediction. In this paper, the TMS320C31 DSP pocessor is used for AC motor control with fst dynamics and the tuning guid-line for the parameters of the predictive control algorithm is given in order to reduce the computation load. Also, the actuator saturationis implemented uisngthe QP(Quadratic Programming) method and the transient response is improved by the identified intertia coefficient when AC motor is drived at forward/reverse rotation.

  • PDF

Nonlinear Models and Linear Models in Expert-Modeling A Lens Model Analysis (전문가 모델링에서 비선형모형과 선형모형 : 렌즈모형분석)

  • 김충녕
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.2
    • /
    • pp.1-16
    • /
    • 1995
  • The field of human judgment and decision making provides useful methodologies for examining the human decision making process and substantive results. One of the methodologies is a lens model analysis which can examine valid nonlinearity in the human decision making process. Using the method, valid nonlinearity in human decision behavior can be successfully detected. Two linear(statistical) models of human experts and two nonlinear models of human experts are compared in terms of predictive accuracy (predictive validity). The results indicate that nonlinear models can capture factors(valid nonlinearity) that contribute to the expert's predictive accuracy, but not factors (inconsistency) that detract from their predictive accuracy. Then, it is argued that nonlinear models cab be more accurate than linear models, or as accurate as human experts, especially when human experts employ valid nonlinear strategies in decision making.

  • PDF