• Title/Summary/Keyword: predictive diagnosis monitoring

Search Result 36, Processing Time 0.021 seconds

A Study of Performance Monitoring and Diagnosis Method for Multivariable MPC Systems

  • Lee, Seung-Yong;Youm, Seung-Hun;Lee, Kwang-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2612-2616
    • /
    • 2003
  • Method for performance monitoring and diagnosis of a MIMO control system has been studied aiming at application to model predictive control (MPC) for industrial processes. The performance monitoring part is designed on the basis of the traditional SPC/SQC method. To meet the underlying premise of Schwart chart observation that the observed variable should be univariate and independent, the process variables are decorrelated temporally as well as spatially before monitoring. The diagnosis part was designed to identify the root of performance degradation among the controller, process, and disturbance. For this, a method to estimate the model-error and disturbance signal has been devised. The proposed methods were evaluated through numerical examples.

  • PDF

Predictive Maintenance Plan based on Vibration Monitoring of Nuclear Power Plants using Industry 4.0 (4차 산업기술을 활용한 원전설비 진동감시기반 예측정비 방안)

  • Do-young Ko
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.6-10
    • /
    • 2023
  • Only about 10% of selected equipment in nuclear power plants are monitored by wiring to address failures or problems caused by vibration. The purpose is primarily for preventive maintenance, not for predictive maintenance. This paper shows that vibration monitoring and diagnosis using Industrial 4.0 enables the complete predictive maintenance for all vibrating equipments in nuclear power plants with the convergence of internet of things; wireless technology, big data through periodic collection and artificial intelligence. Predictive maintenance using wireless technology is possible in all areas of nuclear power plants and in all systems, but it should satisfy regulatory guides on electromagnetic interference and cyber security.

Technology Trends of Smart Abnormal Detection and Diagnosis System for Gas and Hydrogen Facilities (가스·수소 시설의 스마트 이상감지 및 진단 시스템 기술동향)

  • Park, Myeongnam;Kim, Byungkwon;Hong, Gi Hoon;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.41-57
    • /
    • 2022
  • The global demand for carbon neutrality in response to climate change is in a situation where it is necessary to prepare countermeasures for carbon trade barriers for some countries, including Korea, which is classified as an export-led economic structure and greenhouse gas exporter. Therefore, digital transformation, which is one of the predictable ways for the carbon-neutral transition model to be applied, should be introduced early. By applying digital technology to industrial gas manufacturing facilities used in one of the major industries, high-tech manufacturing industry, and hydrogen gas facilities, which are emerging as eco-friendly energy, abnormal detection, and diagnosis services are provided with cloud-based predictive diagnosis monitoring technology including operating knowledge. Here are the trends. Small and medium-sized companies that are in the blind spot of carbon-neutral implementation by confirming the direction of abnormal diagnosis predictive monitoring through optimization, augmented reality technology, IoT and AI knowledge inference, etc., rather than simply monitoring real-time facility status It can be seen that it is possible to disseminate technologies such as consensus knowledge in the engineering domain and predictive diagnostic monitoring that match the economic feasibility and efficiency of the technology. It is hoped that it will be used as a way to seek countermeasures against carbon emission trade barriers based on the highest level of ICT technology.

Fault Diagnosis System of Rotating Machines Using LPC Residual Signal Energy (LPC 잔여신호의 에너지를 이용한 회전기기의 고장진단 시스템)

  • Lee, Sung-Sang;Cho, Sang-Jin;Chong, Ui-Pil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.3
    • /
    • pp.143-147
    • /
    • 2005
  • Monitoring and diagnosis of the operating machines are very important for safety operation and maintenance in the industrial fields. These machines are most rotating machines and the diagnosis of the machines has been researched for long time. We can easily see the faulted signal of the rotating machines from the changes of the signals in frequency. The Linear Predictive Coding(LPC) is introduced for signal analysis in frequency domain. In this paper, we propose fault detection and diagnosis method using the Linear Predictive Coding(LPC) and residual signal energy. We applied our method to the induction motors depending on various status of faulted condition and could obtain good results.

  • PDF

The Study of Predictive Diagnosis Technology Development Status and Promotion Plan for Reactor Coolant Pump (원자로냉각재펌프 예측진단 기술개발 현황 및 추진방안)

  • Hee Chan Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.44-51
    • /
    • 2023
  • The RCP is one of the main components in nuclear power plants and plays an important role in circulating coolant to the RCS system. Currently, nuclear plants are monitored using various monitoring systems. However, since they operate independently according to their functional purpose, it is not able to analyze vibration and operation/performance information comprehensively, and thus failure diagnosis accuracy is limited. In addition, these systems do not provide some important information (such as fault type, parts and cause) necessary for emergency actions, but provide only alarm information. To improve these technical problems, this study proposes a diagnosis technique (M/L, Rule-based model, Data-driven model, Narrow band model) and methodology for comprehensive analysis.

Java-based LonTaIk/IP Network for Predictive Maintenance (PM)

  • Park, Gi-Heung
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2001.11a
    • /
    • pp.31-35
    • /
    • 2001
  • Recent trends require that access to the device/equipment information be provided from several locations or anywhere in the enterprise. One example is virtual machine/manufacturing system (VMS) where predictive maintenance is performed both on factory floor and in remote site through internet [1]. Internet access is increasingly available and affordable, and along with the "internet" is the backbone of modern enterprise data networks. Typical functions of such a system includes monitoring and control for diagnosis and remedy action in realizing preventive maintenance.(omitted)

  • PDF

The Development of a Fault Diagnosis Model based on the Parameter Estimations of Partial Least Square Models (부분최소제곱법 모델의 파라미터 추정을 이용한 화학공정의 이상진단 모델 개발)

  • Lee, Kwang Oh;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.59-67
    • /
    • 2019
  • Since it is really hard to construct process models based on prior process knowledges, various statistical approaches have been employed to build fault diagnosis models. However, the crucial drawback of these approaches is that the solutions may vary according to the fault magnitude, even if the same fault occurs. In this study, the parameter monitoring approach is suggested. When a fault occurs in a chemical process, this leads to trigger the change of a process model and the monitoring parameters of process models is able to provide the efficient fault diagnosis model. A few important variables are selected and their predictive models are constructed by partial least square (PLS) method. The Euclidean norms of parameters of PLS models are estimated and a fault diagnosis can be performed as comparing with parameters of PLS models based on normal operational conditions. To improve the monitoring performance, cumulative summation (CUSUM) control chart is employed and the changes of model parameters are recorded to identify the type of an unknown fault. To verify the efficacy of the proposed model, Tennessee Eastman (TE) process is tested and this model can be easily applied to other complex processes.

In-Process Diagnosis of Servovalve Wear using Leakage Flow Measurement (누설 유량 계측에 의한 서보밸브 마멸의 인-프로세스 진단)

  • Kim K.H.;Han G.S.;Lee J.C.;Ham Y.B.;Kim S.D.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.2
    • /
    • pp.1-7
    • /
    • 2004
  • In-process diagnosis is essential to achieve predictive maintenance in industrial plants. An in- process diagnosis method was proposed for hydraulic servo systems, which was based upon leakage flow measurement. Leakage due to servovalve wear was analysed and modeled mathematically far computer simulation work. The key idea of diagnosis algorithm is that when monitoring signals, such as servovalve input and load displacement are in steady states, the return-line flow of hydraulic servo systems can be regarded as null-leakage of servovalve. Virtual experiments were performed to ensure effectiveness of the proposed diagnosis method.

  • PDF

A case study on the failure diagnosis of plant machinery system by implementing on-line wear monitoring (실시간 마모량 측정을 통한 대형 기계윤활시스템의 파손발생 진단사례)

  • 윤의성;장래혁;공호성;한흥구;권오관;송재수;김재덕;엄형섭
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.321-327
    • /
    • 1998
  • This paper presented a case study on the application of on-line wear monitoring technique to a high duty air-turbo-compressor system. Main objects monitored were a gear unit and metal bearings, both shown frequent troubles due to the severe operation conditions at heavy dynamic load. The air-turbo-compressor system needs secure condition monitoring because it is one of the main utilities in steel making industry. Temperature and vibration characteristics have been mainly on-line monitored in this system for a predictive maintenance; however, it has been shown that they are not fairly good enough to give an early warning prior to the machine failure. In this work, an on-line Opto Magnetic Detector(OMD) was implemented for an on-line wear monitoring, which quantitatively measured the contamination level of both ferrous and non-ferrous wear particles by detecting the change in optical density of used oil. Results showed that the application of on-line OMD system was satisfactory in diagnosis of the machine system.

  • PDF

Review on Advanced Health Monitoring Methods for Aero Gas Turbines using Model Based Methods and Artificial Intelligent Methods

  • Kong, Changduk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.123-137
    • /
    • 2014
  • The aviation gas turbine is composed of many expensive and highly precise parts and operated in high pressure and temperature gas. When breakdown or performance deterioration occurs due to the hostile environment and component degradation, it severely influences the aircraft operation. Recently to minimize this problem the third generation of predictive maintenance known as condition based maintenance has been developed. This method not only monitors the engine condition and diagnoses the engine faults but also gives proper maintenance advice. Therefore it can maximize the availability and minimize the maintenance cost. The advanced gas turbine health monitoring method is classified into model based diagnosis (such as observers, parity equations, parameter estimation and Gas Path Analysis (GPA)) and soft computing diagnosis (such as expert system, fuzzy logic, Neural Networks (NNs) and Genetic Algorithms (GA)). The overview shows an introduction, advantages, and disadvantages of each advanced engine health monitoring method. In addition, some practical gas turbine health monitoring application examples using the GPA methods and the artificial intelligent methods including fuzzy logic, NNs and GA developed by the author are presented.