• 제목/요약/키워드: predictive and preventive maintenance

검색결과 27건 처리시간 0.021초

LonWorks/IP 가상 디바이스 네트워크에서 외란관측기와 ZPETC를 이용한 추종제어 (Tracking Control using Disturbance Observer and ZPETC on LonWorks/IP Virtual Device Network)

  • 송기원
    • 전자공학회논문지SC
    • /
    • 제44권1호
    • /
    • pp.33-39
    • /
    • 2007
  • LonWorks/IP VDN은 LonWorks 디바이스 네트워크와 IP(데이터) 네트워크와의 통합네트워크로 산업현장에 대한 유비쿼터스 접근을 제공하여 설비에 대한 예지 및 예방보전을 가능하게 한다. 산업현장에 대한 예지 및 예방보전을 위한 실시간 분산제어 환경에서 즉각적인 응답은 필수불가결한 요소이다. LonWorks/IP 가상 디바이스 네트워크(VDN) 상에서 불확실한 시간지연은 산업현장에 대한 실시간 예지 및 예방보전을 위해 분산 제어를 수행할 때 시스템의 안정성과 성능을 악화시킨다. 따라서 네트워킹 된 분산제어시스템의 안정성을 보장하고 성능을 개선하기 위해서는 시간에 따라 가변적인 불확실한 시간지연을 보상할 필요가 있다. 본 논문에서는 LonWorks/IP VDN와 같은 분산제어 환경 하에서 서보 제어를 수행하는 경우에 외란관측기와 위상지연 보상기로 ZPETC(Zero Phase Error Tracking Controller)를 도입한 제어구조가 제시되고 컴퓨터 모의실험이 수행된다. 제안된 제어기의 성능은 컴퓨터 모의실험을 통하여 외란관측기를 도입한 Smith 예측기 기반의 내부모델제어기(IMC)의 제어결과와 비교 제시된다. 제안된 제어기는 외란과 잡음에 강인한 특성을 가지며, 주기적인 신호에 대한 추종성능을 상당히 개선시키므로 가변적인 시간지연을 갖는 LonWorks/IP VDN 상에서 주기적인 작업 수행에 필요한 분산 서보제어에 매우 적합하다.

정비프로그램 평가 및 해외사례 분석을 통한 비상디젤엔진의 신뢰성 향상방안 (The Proposal for Reliability Improvement of Emergency Diesel Engines through the Evaluation of the Maintenance Program and Overseas Cases for their Applications)

  • 조권회;정현종;안수길
    • 동력기계공학회지
    • /
    • 제8권2호
    • /
    • pp.5-11
    • /
    • 2004
  • The failure frequency of the Emergency Diesel Generator(EDG) at Nuclear Power Plants(NPPs) is not so much lower than that of the Marine engines, whereas the running hours of the diesel engine at NPPs is much less than those of the engines for commercial service. The primary factor results from the severe surveillance test requirements such as fast start, large number of starting test, fast load-run, high load running, etc. The other factor comes from the excessive maintenance based on the engine maker's instruction manual that did not incorporate the peculiar characteristics of the diesel engines at NPPs. In this paper, the present preventive maintenance program on the basis of the Pielstick diesel engines was reviewed for the purpose of securing the reliability of the emergency diesel generator at NPPs and the ways for its improvement were presented by referring to the overseas cases for their applications.

  • PDF

기계적 모터 고장진단을 위한 머신러닝 기법 (A Machine Learning Approach for Mechanical Motor Fault Diagnosis)

  • 정훈;김주원
    • 산업경영시스템학회지
    • /
    • 제40권1호
    • /
    • pp.57-64
    • /
    • 2017
  • In order to reduce damages to major railroad components, which have the potential to cause interruptions to railroad services and safety accidents and to generate unnecessary maintenance costs, the development of rolling stock maintenance technology is switching from preventive maintenance based on the inspection period to predictive maintenance technology, led by advanced countries. Furthermore, to enhance trust in accordance with the speedup of system and reduce maintenances cost simultaneously, the demand for fault diagnosis and prognostic health management technology is increasing. The objective of this paper is to propose a highly reliable learning model using various machine learning algorithms that can be applied to critical rolling stock components. This paper presents a model for railway rolling stock component fault diagnosis and conducts a mechanical failure diagnosis of motor components by applying the machine learning technique in order to ensure efficient maintenance support along with a data preprocessing plan for component fault diagnosis. This paper first defines a failure diagnosis model for rolling stock components. Function-based algorithms ANFIS and SMO were used as machine learning techniques for generating the failure diagnosis model. Two tree-based algorithms, RadomForest and CART, were also employed. In order to evaluate the performance of the algorithms to be used for diagnosing failures in motors as a critical railroad component, an experiment was carried out on 2 data sets with different classes (includes 6 classes and 3 class levels). According to the results of the experiment, the random forest algorithm, a tree-based machine learning technique, showed the best performance.

XGBoost를 활용한 고속도로 콘크리트 포장 파손 예측 (Predicting Highway Concrete Pavement Damage using XGBoost)

  • 이용준;선종완
    • 한국건설관리학회논문집
    • /
    • 제21권6호
    • /
    • pp.46-55
    • /
    • 2020
  • 도로연장의 지속적인 증가와 공용기간이 상당히 경과한 노후 노선이 늘어남에 따라 도로포장에 대한 유지관리비용은 점차 증가하고 있어, 예방적 유지관리를 통해 비용을 최소화 하는 방안에 대한 필요성이 제기되고 있다. 예방적 유지관리를 위해서는 도로포장의 정확한 파손 예측을 통한 전략적 유지관리 계획 수립이 필요하다. 이에 본 연구에서는 고속도로 콘크리트 포장 파손 예측 모델 개발을 위해 머신러닝 분류기반 모델 중 성능이 우수한 XGBoost 기법을 사용하였다. 먼저 데이터 샘플링을 통해 데이터 불균형 문제를 해결하고 샘플링된 데이터들에 XGBoost 기법을 활용하여 예측모델을 개발하고. F1 소코어를 통해 성능을 평가하였다. 분석 결과 오버 샘플링 기법이 가장 좋은 성능 결과를 보였으며, 도로파손에 영향을 주는 주요 변수로 공용년수, ESAL, 최저 평균 최저기온 -2도 이하 일수 순으로 산정되었다. 향후 더 많은 데이터 축적 및 세밀한 데이터 전처리 작업을 통해 예측모델의 성능이 향상된다면 보다 정확한 유지보수 필요 구간의 예측이 가능해질 것으로 판단되므로 장래 고속도로 포장 유지보수 예산의 추정에 중요한 기초정보로 활용될 수 있을 것이라 기대된다.

반응형 웹 기반 선박 보조기기 및 배관 상태 진단 모니터링 시스템 구현 (Implementation of Responsive Web-based Vessel Auxiliary Equipment and Pipe Condition Diagnosis Monitoring System)

  • 박순호;최우근;최경열;권상혁
    • 한국항해항만학회지
    • /
    • 제46권6호
    • /
    • pp.562-569
    • /
    • 2022
  • 기존 운항선박에 적용되어 있는 알람 모니터링 기술은 온도, 압력 등의 데이터 항목을 AMS(Alarm Monitoring System)으로 관리하고 해당 센싱 데이터가 정상 수준 범위를 초과할 경우만 선원에게 알람을 제공한다. 또한 기존 선박의 정비는 PMS(Planned Maintenance System)를 따른다. 이는 장비로부터 측정된 센싱 데이터가 설정범위 이상으로 측정되어 이에 따른 알람을 통해 정비하거나, 대상 기기의 고장 유무에 관계없이 일정 시간 사용 후 해당 부품을 사전에 교체하는 방식으로 운영되고 있다. 하지만 선박 기관운영의 신뢰성과 운항 안전성을 확보하기 위해서는 실시간 상태 모니터링 데이터 기반의 사전적 진단 및 예측이 가능해야 한다. 그러기 위해서 실선 데이터를 종합적으로측정하여 데이터베이스화 하고 이를 선박의 보조기기와 배관의 상태기반 예지보전을 위한 상태 진단 모니터링 시스템을 구현하고자 한다. 특히 반응형 웹 기반으로 선박의 보조기기와 배관 상태 정보를 관리할 수 있도록 하였으며, 선내 개인용 컴퓨터(Personal Computer, PC)에서 보는 용도뿐만 아니라 스마트폰 등 다양한 모바일 기기의 접근 및 활용이 가능하도록 화면과 해상도에 맞춰 최적화된 상태 관리가 가능하도록 하여 업데이트 비용이 적게 들며, 관리 방법도 쉽다. 본 논문에서는 자율운항선박 핵심 기술인 상태기반정비(Condition Based Management, CBM) 기술력을 확보하기 위해 선박의 보조기기 중 펌프와 청정기, 그리고 배관 중 해수 및 스팀 배관의 상태 진단 모니터링을 통해 이상 현상을 파악하고, 이를 통해 융합 분석할 수 있도록 선박 보조기기 및 배관의 성능 진단 및 고장 예측에 활용하여 예방정비 의사결정을 지원하고자 한다.

SHAP를 활용한 중요변수 파악 및 선택에 따른 잔여유효수명 예측 성능 변동에 대한 연구 (A Study on the Remaining Useful Life Prediction Performance Variation based on Identification and Selection by using SHAP)

  • 윤연아;이승훈;김용수
    • 산업경영시스템학회지
    • /
    • 제44권4호
    • /
    • pp.1-11
    • /
    • 2021
  • Recently, the importance of preventive maintenance has been emerging since failures in a complex system are automatically detected due to the development of artificial intelligence techniques and sensor technology. Therefore, prognostic and health management (PHM) is being actively studied, and prediction of the remaining useful life (RUL) of the system is being one of the most important tasks. A lot of researches has been conducted to predict the RUL. Deep learning models have been developed to improve prediction performance, but studies on identifying the importance of features are not carried out. It is very meaningful to extract and interpret features that affect failures while improving the predictive accuracy of RUL is important. In this paper, a total of six popular deep learning models were employed to predict the RUL, and identified important variables for each model through SHAP (Shapley Additive explanations) that one of the explainable artificial intelligence (XAI). Moreover, the fluctuations and trends of prediction performance according to the number of variables were identified. This paper can suggest the possibility of explainability of various deep learning models, and the application of XAI can be demonstrated. Also, through this proposed method, it is expected that the possibility of utilizing SHAP as a feature selection method.

심층신경망을 이용한 비운송 지중구조물의 탄산화속도 예측 모델링 (Modelling on the Carbonation Rate Prediction of Non-Transport Underground Infrastructures Using Deep Neural Network)

  • 윤병돈
    • 한국산학기술학회논문지
    • /
    • 제22권4호
    • /
    • pp.220-227
    • /
    • 2021
  • 비운송 지중구조물인 전력구와 공동구는 대부분 철근 콘크리트 구조물로서 공용기간이 경과함에 따라 탄산화에 의한 열화로 내구성이 저하된다. 특히, 전력구 및 공동구는 용도별, 지역별로 탄산화 속도가 상이하므로 개별적인 유지관리를 위해서는 탄산화 실측 데이터에 기반한 예측 모델이 요구된다. 본 연구에서는 노후화 된 전력구 및 공동구와 같이 기존 비운송 지중구조물에 대한 탄산화 예측 모델을 개발하였다. 탄산화 예측 모델 개발을 위해 안전점검에서 확보한 실측 데이터를 기반으로 다중회귀분석 및 심층신경망 기법을 활용하였다. 다중회귀분석에서 종속 변수인 탄산화 속도계수 결정을 위해 독립 변수로서 구조물, 지역, 측정 위치, 시공 유형, 측정 부재, 콘크리트 강도를 선정하였으며, 다중회귀 예측 모델의 수정결정계수(Ra2)는 0.67로 분석되었다. 심층신경망을 이용한 비운송 지중구조물의 탄산화 예측 모델결정계수(R2)는 0.82로 나타났으며, 비교대상 모델보다 우수한 예측 성능을 보였다. 심층신경망을 이용한 비운송 지중구조물의 탄산화 예측 모델은 콘크리트 강도에 기초한 것으로, 본 연구의 결과가 노후화 된 전력구 및 공동구에 대한 탄산화 유지보수 최적 시기 결정 및 예방적 유지관리 방법론에 기여되길 기대한다.