• Title/Summary/Keyword: predictive and preventive maintenance

Search Result 27, Processing Time 0.023 seconds

Predictive and Preventive Maintenance using Distributed Control on LonWorks/IP Network

  • Song, Ki-Won
    • International Journal of Safety
    • /
    • v.5 no.2
    • /
    • pp.6-11
    • /
    • 2006
  • The time delay in servo control on LonWorks/IP Virtual Device Network (VDN) is highly stochastic in nature. LonWorks/IP VDN induced time delay deteriorates the performance and stability of the real-time distributed control system and hinders an effective preventive and predictive maintenance. Especially in real-time distributed servo applications on the factory floor, timely response is essential for predictive and preventive maintenance. In order to guarantee the stability and performance of the system for effective preventive and predictive maintenance, LonWorks/IP VDN induced time delay needs to be predicted and compensated for. In this paper position control simulation of DC servo motor using Zero Phase Error Tracking Controller (ZPETC) as a feedforward controller, and Internal Model Controllers (IMC) based on Smith predictor with disturbance observer as a feedback controller is performed. The validity of the proposed control scheme is demonstrated by comparing the IMC based on Smith predictor with disturbance observer.

Distributed Control of DC Servo Motor on LonWorks-IP Virtual Device Network for Predictive and Preventive Maintenance (LonWorks-IP 가상 디바이스 네트워크상에서 예지 및 예방보전을 위한 DC 서보모터의 분산제어)

  • Song, Ki-Won
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.25-32
    • /
    • 2006
  • LonWorks over IP(LonWorks-IP) virtual device network(VDN) is an integrated form of LonWorks device network and IP data network. In especially real-time distributed servo applications on the factory floor, timely response is essential for predictive and preventive maintenance. The time delay in servo control on LonWorks-IP based VDN has highly stochastic nature. LonWorks-IP based VDN induced transmission delay deteriorates the performance and stability of the real-time distributed control system and can't give an effective preventive and predictive maintenance. In order to guarantee the stability and performance of the system, and give an effective preventive and predictive maintenance, LonWorks-IP based VDN induced time-varying uncertain time delay needs to be predicted and compensated. In this paper new Pill control scheme based on Smith predictor, disturbance observer and band pass filter is proposed and tested through computer simulation about position control of DC servo motor. It is shown that how can the proposed control scheme be designed to minimize the effects of uncertain varying time delay and model uncertainties. The validity of the proposed control scheme is compared and demonstrated with the comparison of internal model controllers(IMC) based on Smith predictor with and without disturbance observer.

A Predictive Preventive Maintenance Data Base System Design for Safety (안전성 확보를 위한 예측.예방설비보전 데이터베이스 시스템 설계)

  • Yang, Sung-Hwan;Park, Peom
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.44
    • /
    • pp.123-128
    • /
    • 1997
  • A data base design framework for predictive a preventive-maintenance system is presented in this paper in order to effectively control machines and reduce accident rates in the workplace. The data base is designed to meet general management requirements to evaluate different maintenance strategies. There are seven data files: the equipment list maintenace pesonnel, maintenance history, maintenance specification, spare part, maintenance equipment, and maintenance schedules. Each data base file has several record based upon data acquisition.

  • PDF

Development the Preventive Maintenance Template of the Nuclear Steam Turbine based on EPRI PMBD (EPRI의 예방정비기초자료에 근거한 원전 증기터빈의 예방정비기준 개발)

  • Lee, Byoung Hak;Lee, Hyuk Soon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • The existing maintenance program is focused on time-based maintenance to inspect and repair components according to maintenance period, rather than condition-based maintenance or predictive maintenance. The preventive maintenance template of the steam turbine has been developed for optimizing maintenance procedure and improving reliability and availability of the steam turbine of nuclear power plants based on EPRI PM template methodology and EPRI technical reports about preventive maintenance.

  • PDF

Cost-optimal Preventive Maintenance based on Remaining Useful Life Prediction and Minimum-repair Block Replacement Models (잔여 유효 수명 예측 모형과 최소 수리 블록 교체 모형에 기반한 비용 최적 예방 정비 방법)

  • Choo, Young-Suk;Shin, Seung-Jun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.18-30
    • /
    • 2022
  • Predicting remaining useful life (RUL) becomes significant to implement prognostics and health management of industrial systems. The relevant studies have contributed to creating RUL prediction models and validating their acceptable performance; however, they are confined to drive reasonable preventive maintenance strategies derived from and connected with such predictive models. This paper proposes a data-driven preventive maintenance method that predicts RUL of industrial systems and determines the optimal replacement time intervals to lead to cost minimization in preventive maintenance. The proposed method comprises: (1) generating RUL prediction models through learning historical process data by using machine learning techniques including random forest and extreme gradient boosting, and (2) applying the system failure time derived from the RUL prediction models to the Weibull distribution-based minimum-repair block replacement model for finding the cost-optimal block replacement time. The paper includes a case study to demonstrate the feasibility of the proposed method using an open dataset, wherein sensor data are generated and recorded from turbofan engine systems.

Predictive Maintenance Plan based on Vibration Monitoring of Nuclear Power Plants using Industry 4.0 (4차 산업기술을 활용한 원전설비 진동감시기반 예측정비 방안)

  • Do-young Ko
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.6-10
    • /
    • 2023
  • Only about 10% of selected equipment in nuclear power plants are monitored by wiring to address failures or problems caused by vibration. The purpose is primarily for preventive maintenance, not for predictive maintenance. This paper shows that vibration monitoring and diagnosis using Industrial 4.0 enables the complete predictive maintenance for all vibrating equipments in nuclear power plants with the convergence of internet of things; wireless technology, big data through periodic collection and artificial intelligence. Predictive maintenance using wireless technology is possible in all areas of nuclear power plants and in all systems, but it should satisfy regulatory guides on electromagnetic interference and cyber security.

Predictive Diagnosis and Preventive Maintenance Technologies for Dry Vacuum Pumps (건식 진공펌프의 상태진단 및 예지보수 기법)

  • Cheung, Wan-Sup
    • Vacuum Magazine
    • /
    • v.2 no.1
    • /
    • pp.31-34
    • /
    • 2015
  • This article introduces fundamentals of self-diagnosis and predictive (or preventive) maintenance technologies for dry vacuum pumps. The state variables of dry pumps are addressed, such as the pump and motor body temperatures, consumption currents of main and booster pumps, mechanical vibration, and exhaust pressure, etc. The adaptive parametric models of the state variables of the dry pump are exploited to provide dramatic reduction of data size and computation time for self-diagnosis. Two indicators, the Hotelling's $T^2$ and the sum of squares residuals (Q), are illustrated to be quite effective and successful in diagnosing dry pumps used in the semiconductor processes.

An Integrated Maintenance in Injection Molding Processes (사출성형 공정에서의 통합정비방법에 관한 연구)

  • Park, Chulsoon;Moon, Dug Hee;Sung, Hongsuk;Song, Junyeop;Jung, Jongyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.100-107
    • /
    • 2015
  • Recently as the manufacturers want competitiveness in dynamically changing environment, they are trying a lot of efforts to be efficient with their production systems, which may be achieved by diminishing unplanned operation stops. The operation stops and maintenance cost are known to be significantly decreased by adopting proper maintenance strategy. Therefore, the manufacturers were more getting interested in scheduling of exact maintenance scheduling to keep smooth operation and prevent unexpected stops. In this paper, we proposedan integrated maintenance approach in injection molding manufacturing line. It consists of predictive and preventive maintenance approach. The predictive maintenance uses the statistical process control technique with the real-time data and the preventive maintenance is based on the checking period of machine components or equipment. For the predictive maintenance approach, firstly, we identified components or equipment that are required maintenance, and then machine parameters that are related with the identified components or equipment. Second, we performed regression analysis to select the machine parameters that affect the quality of the manufactured products and are significant to the quality of the products. By this analysis, we can exclude the insignificant parameters from monitoring parameters and focus on the significant parameters. Third, we developed the statistical prediction models for the selected machine parameters. Current models include regression, exponential smoothing and so on. We used these models to decide abnormal patternand to schedule maintenance. Finally, for other components or equipment which is not covered by predictive approach, we adoptedpreventive maintenance approach. To show feasibility we developed an integrated maintenance support system in LabView Watchdog Agent and SQL Server environment and validated our proposed methodology with experimental data.

A Study on the Concept of a Ship Predictive Maintenance Model Reflection Ship Operation Characteristics (선박 운항 특성을 반영한 선박 예지 정비 모델 개념 제안)

  • Youn, Ik-Hyun;Park, Jinkyu;Oh, Jungmo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.53-59
    • /
    • 2021
  • The marine transport industry generally applies new technologies later than other transport industries, such as airways and railways. Vessels require efficient operation, and their performance and lifespan depend on the level of maintenance and management. Many studies have shown that corrective maintenance (CM) and time-based maintenance (TBM) have restrictions with respect to enabling efficient maintenance of workload and cost to improve operational efficiency. Predictive maintenance (PdM) is an advanced technology that allows monitoring the condition and performance of a target machine to predict its time of failure and helps maintain the key machinery in optimal working conditions at all times. This study presents the development of a marine predictive maintenance (MPdM; maritime predictive maintenance) method based on applying PdM to the marine environment. The MPdM scheme is designed by considering the special environment of the marine transport industry and the extreme marine conditions. Further, results of the study elaborates upon the concept of MPdM and its necessity to advancing marine transportation in the future.

Scheduling of Preventive Maintenance for Generating Unit Considering Condition of System (시스템의 상태를 고려한 발전설비의 예방 유지보수 계획 수립)

  • Shin, Jun-Seok;Byeon, Yoong-Tae;Kim, Jin-O;Kim, Hyung-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1305-1310
    • /
    • 2008
  • Traditional maintenance planning is based on a constant maintenance interval for equipment life. In order to consider economic aspect for time based preventive maintenance, preventive maintenance is desirable to be scheduled by RCM(Reliability-Centered Maintenance) evaluation. The main objective of RCM is to reduce the maintenance cost, by focusing on the most important functions of the system and avoiding or removing maintenance actions that are not strictly necessary. So, Markov state model is utilized considering stochastic state in RCM. In this paper, a Markov state model which can be used for scheduling and optimization of maintenance is presented. The deterioration process of system condition is modeled by the stepwise Markov model in detail. Also, because the system is not continuously monitored, the inspection is considered. In case study, simulation results about RCM will be shown using the real historical data of combustion turbine generating unit in Korean power systems.