• Title/Summary/Keyword: predictive accuracy

Search Result 782, Processing Time 0.039 seconds

Usefulness of serum procalcitonin test for the diagnosis of upper urinary tract infection in children (소아 상부 요로감염의 진단을 위한 혈청 procalcitonin 검사의 유용성)

  • Kim, Dong Wook;Chung, Ju Young;Koo, Ja Wook;Kim, Sang Woo;Han, Tae Hee
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.1
    • /
    • pp.87-92
    • /
    • 2006
  • Purpose : It is difficult to make a distinction between lower urinary tract infection(UTI) and acute pyelonephritis(APN) during the acute phase of febrile UTI due to nonspecific clinical symptoms and laboratory findings, especially among young children. We measured the serum procalcitonin(PCT) in children with UTI to distinguish between acute pyelonephritis and lower UTI, and to determine the accuracy of PCT measurement compared with other inflammatory markers. Methods : Serum samples were taken from children who admitted with unexplained fever or were suspected of having UTI. 51 children(mean $12.2{\pm}11.4$ months) were enrolled in this study. Leukocyte counts, erythrocyte sedimentation rates(ESR) and C-reactive protein(CRP) were also measured. Renal parenchymal involvement was assessed by $^{99m}Tc$ DMSA scintigraphy in the first 7 days after admission. PCT was measured by immunoluminometric assay. Results : PCT values were significantly correlated with the presence of renal defects in children with UTI(n=16)($5.06{\pm}12.97{\mu}g/L$, P<0.05). However, PCT values were not significantly different between children with UTI without renal damage(n=18) and children without UTI(n=17). Using a cutoff of $0.5{\mu}g/L$ for PCT and 20 mm/hr for ESR, 20 mg/L for CRP, sensitivity and specificity in distinguishing between UTI with and without renal involvement were 81.3 percent and 88.9 percent for PCT 87.5 percent and 72.2 percent for ESR, and 87.5 percent and 55.6 percent for CRP, respectively. Positive and negative predictive values were 86.7 percent and 84.2 percent for PCT and 60.9 percent and 81.8 percent for CRP, respectively. Conclusion : In febrile UTI, PCT values were more specific than CRP, ESR and leukocyte count for the identification of patients who might develop renal defects.

A Study to Validate the Pretest Probability of Malignancy in Solitary Pulmonary Nodule (사전검사를 통한 고립성 폐결절 환자에서의 악성 확률 타당성에 대한 연구)

  • Jang, Joo Hyun;Park, Sung Hoon;Choi, Jeong Hee;Lee, Chang Youl;Hwang, Yong Il;Shin, Tae Rim;Park, Yong Bum;Lee, Jae Young;Jang, Seung Hun;Kim, Cheol Hong;Park, Sang Myeon;Kim, Dong Gyu;Lee, Myung Goo;Hyun, In Gyu;Jung, Ki Suck
    • Tuberculosis and Respiratory Diseases
    • /
    • v.67 no.2
    • /
    • pp.105-112
    • /
    • 2009
  • Background: Solitary pulmonary nodules (SPN) are encountered incidentally in 0.2% of patients who undergo chest X-ray or chest CT. Although SPN has malignant potential, it cannot be treated surgically by biopsy in all patients. The first stage is to determine if patients with SPN require periodic observation and biopsy or resection. An important early step in the management of patients with SPN is to estimate the clinical pretest probability of a malignancy. In every patient with SPN, it is recommended that clinicians estimate the pretest probability of a malignancy either qualitatively using clinical judgment or quantitatively using a validated model. This study examined whether Bayesian analysis or multiple logistic regression analysis is more predictive of the probability of a malignancy in SPN. Methods: From January 2005 to December 2008, this study enrolled 63 participants with SPN at the Kangnam Sacred Hospital. The accuracy of Bayesian analysis and Bayesian analysis with a FDG-PET scan, and Multiple logistic regression analysis was compared retrospectively. The accurate probability of a malignancy in a patient was compared by taking the chest CT and pathology of SPN patients with <30 mm at CXR incidentally. Results: From those participated in study, 27 people (42.9%) were classified as having a malignancy, and 36 people were benign. The result of the malignant estimation by Bayesian analysis was 0.779 (95% confidence interval [CI], 0.657 to 0.874). Using Multiple logistic regression analysis, the result was 0.684 (95% CI, 0.555 to 0.796). This suggests that Bayesian analysis provides a more accurate examination than multiple logistic regression analysis. Conclusion: Bayesian analysis is better than multiple logistic regression analysis in predicting the probability of a malignancy in solitary pulmonary nodules but the difference was not statistically significant.

Added Value of 3D Cardiac SPECT/CTA Fusion Imaging in Patients with Reversible Perfusion Defect on Myocardial Perfusion SPECT (심근관류 SPECT에서 가역적인 병변을 보인 환자의 3차원 심장 SPECT/CTA 퓨전영상의 유용성)

  • Kong, Eun-Jung;Cho, Ihn-Ho;Kang, Won-Jun;Kim, Seong-Min;Won, Kyoung-Sook;Lim, Seok-Tae;Hwang, Kyung-Hoon;Lee, Byeong-Il;Bom, Hee-Seung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.6
    • /
    • pp.513-518
    • /
    • 2009
  • Purpose: Integration of the functional information of myocardial perfusion SPECT (MPS) and the morphoanatomical information of coronary CT angiography (CTA) may provide useful additional diagnostic information of the spatial relationship between perfusion defects and coronary stenosis. We studied to know the added value of three dimensional cardiac SPECT/CTA fusion imaging (fusion image) by comparing between fusion image and MPS. Materials and Methods: Forty-eight patients (M:F=26:22, Age: $63.3{\pm}10.4$ years) with a reversible perfusion defect on MPS (adenosine stress/rest SPECT with Tc-99m sestamibi or tetrofosmin) and CTA were included. Fusion images were molded and compared with the findings from the MPS. Invasive coronary angiography served as a reference standard for fusion image and MPS. Results: Total 144 coronary arteries in 48 patients were analyzed; Fusion image yielded the sensitivity, specificity, negative and positive predictive value for the detection of hemodynamically significant stenosis per coronary artery 82.5%, 79.3%, 76.7% and 84.6%, respectively. Respective values for the MPS were 68.8%, 70.7%, 62.1% and 76.4%. And fusion image also could detect more multi-vessel disease. Conclusion: Fused three dimensional volume-rendered SPECT/CTA imaging provides intuitive convincing information about hemodynamic relevant lesion and could improved diagnostic accuracy.

Impact of Sulfur Dioxide Impurity on Process Design of $CO_2$ Offshore Geological Storage: Evaluation of Physical Property Models and Optimization of Binary Parameter (이산화황 불순물이 이산화탄소 해양 지중저장 공정설계에 미치는 영향 평가: 상태량 모델의 비교 분석 및 이성분 매개변수 최적화)

  • Huh, Cheol;Kang, Seong-Gil;Cho, Mang-Ik
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.187-197
    • /
    • 2010
  • Carbon dioxide Capture and Storage(CCS) is regarded as one of the most promising options to response climate change. CCS is a three-stage process consisting of the capture of carbon dioxide($CO_2$), the transport of $CO_2$ to a storage location, and the long term isolation of $CO_2$ from the atmosphere for the purpose of carbon emission mitigation. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the $CO_2$ mixture captured from the power plants and steel making plants contains many impurities such as $N_2$, $O_2$, Ar, $H_2O$, $SO_2$, $H_2S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification, transport and injection processes. In order to design a reliable $CO_2$ marine geological storage system, it is necessary to analyze the impact of these impurities on the whole CCS process at initial design stage. The purpose of the present paper is to compare and analyse the relevant physical property models including BWRS, PR, PRBM, RKS and SRK equations of state, and NRTL-RK model which are crucial numerical process simulation tools. To evaluate the predictive accuracy of the equation of the state for $CO_2-SO_2$ mixture, we compared numerical calculation results with reference experimental data. In addition, optimum binary parameter to consider the interaction of $CO_2$ and $SO_2$ molecules was suggested based on the mean absolute percent error. In conclusion, we suggest the most reliable physical property model with optimized binary parameter in designing the $CO_2-SO_2$ mixture marine geological storage process.

Effect of Nitrogen Impurity on Process Design of $CO_2$ Marine Geological Storage: Evaluation of Equation of State and Optimization of Binary Parameter (질소 불순물이 이산화탄소 해양 지중저장 공정설계에 미치는 영향 평가: 상태방정식의 비교 분석 및 이성분 매개변수 최적화)

  • Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.217-226
    • /
    • 2009
  • Marine geological storage of $CO_2$ is regarded as one of the most promising options to response climate change. Marine geological storage of $CO_2$ is to capture $CO_2$ from major point sources, to transport to the storage sites and to store $CO_2$ into the marine geological structure such as deep sea saline aquifer. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the captured $CO_2$ mixture contains many impurities such as $N_2$, $O_2$, Ar, $H_2O$, $SO_x$, $H_2S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification and transport processes. In order to design a reliable $CO_2$ marine geological storage system, it is necessary to perform numerical process simulation using thermodynamic equation of state. The purpose of the present paper is to compare and analyse the relevant equations of state including PR, PRBM, RKS and SRK equation of state for $CO_2-N_2$ mixture. To evaluate the predictive accuracy of the equation of the state, we compared numerical calculation results with reference experimental data. In addition, optimum binary parameter to consider the interaction of $CO_2$ and $N_2$ molecules was suggested based on the mean absolute percent error. In conclusion, we suggest the most reliable equation of state and relevant binary parameter in designing the $CO_2-N_2$ mixture marine geological storage process.

  • PDF

Crime Incident Prediction Model based on Bayesian Probability (베이지안 확률 기반 범죄위험지역 예측 모델 개발)

  • HEO, Sun-Young;KIM, Ju-Young;MOON, Tae-Heon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.4
    • /
    • pp.89-101
    • /
    • 2017
  • Crime occurs differently based on not only place locations and building uses but also the characteristics of the people who use the place and the spatial structures of the buildings and locations. Therefore, if spatial big data, which contain spatial and regional properties, can be utilized, proper crime prevention measures can be enacted. Recently, with the advent of big data and the revolutionary intelligent information era, predictive policing has emerged as a new paradigm for police activities. Based on 7420 actual crime incidents occurring over three years in a typical provincial city, "J city," this study identified the areas in which crimes occurred and predicted risky areas. Spatial regression analysis was performed using spatial big data about only physical and environmental variables. Based on the results, using the street width, average number of building floors, building coverage ratio, the type of use of the first floor (Type II neighborhood living facility, commercial facility, pleasure use, or residential use), this study established a Crime Incident Prediction Model (CIPM) based on Bayesian probability theory. As a result, it was found that the model was suitable for crime prediction because the overlap analysis with the actual crime areas and the receiver operating characteristic curve (Roc curve), which evaluated the accuracy of the model, showed an area under the curve (AUC) value of 0.8. It was also found that a block where the commercial and entertainment facilities were concentrated, a block where the number of building floors is high, and a block where the commercial, entertainment, residential facilities are mixed are high-risk areas. This study provides a meaningful step forward to the development of a crime prediction model, unlike previous studies that explored the spatial distribution of crime and the factors influencing crime occurrence.

Predictive Factors of Renal Scarring in Children with Acute Urinary Tract Infection (급성 요로감염 환아의 신장 반흔 예측요인)

  • Baik, Jun-Hyun;Park, Young-Ha;Hwang, Sung-Su;Jeon, Jung-Su;Kim, Sung-Hoon;Lee, Seong-Yong;Chung, Soo-Kyo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.4
    • /
    • pp.245-253
    • /
    • 2003
  • Puorpose: The purpose of this study was to evaluate the usefulness of $^{99m}Tc$ DMSA scintigraphy on the dignosis of a renal scar in children with urinary tract infections. Materials and Methods: Eighty three patients were included in this study, who were diagnosed as the urinary tract infection on the basis of symptom, urinalysis and urine culture. $^{99m}Tc$ DMSA scintigraphy and voiding cystoureterography were peformed within 7days before the treatment in all patients. We classified the scintigraphic findings as follow s : 1 ; a large hypoactive upper or lower pole. 2 ; a small hypoactive area. 3 ; single defect resulting in localized deformity of the outlines. 4 ; deformed outlines in a small or normal sized kidney. 5 ; multiple defects. 6 ; diffuse hypoactive kidney without regional impairment. Follow-up scintigraphy was done at least 6 months after the initial study. When the abnormality on the initial scintigraphy was not completely resolved on the follow-up scan, the lesion was defined as containing a scar. Results: One hundred and fifteen renal units of 166 units(69.3%) showed abnormal findings on the DMSA scintigraphy. 65 units(56.5%) was diagnosed as containing renal scars on follow-up scintigraphies. Incidences of renal scar among renal units showing pattern 3, 4 and 5 on the initial scan was 75%, 78% and 78%, respectively. Whereas many of renal units showing 1, 2 and 6 pattern were recovered(65%, 76%, 50%). Sensitivity, specificity and accuracy of pattern-based DMSA scintigraphic findings on the diagnosis of renal scar was 76.9%, 85.1% and 81.9%, respectively. VUR was significantly associated with the renal scar when the initial DMSA shows unrecoverable findings(pattern 3, 4, 5). Odds ratio of the renal scar in a kidney showing unrecoverable initial scintigraphic findings was 19.1. Odds ratio in a kidney with mild or moderate-to-severe VUR was 3.5 and 14.4 respectively. Conclusion: In the urinary tract infection, renal scar was significantly developed in a kidney showing unrecoverable findings on the initial DMSA scan and VUR on voiding cystoureterography.

Bankruptcy Prediction Modeling Using Qualitative Information Based on Big Data Analytics (빅데이터 기반의 정성 정보를 활용한 부도 예측 모형 구축)

  • Jo, Nam-ok;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.33-56
    • /
    • 2016
  • Many researchers have focused on developing bankruptcy prediction models using modeling techniques, such as statistical methods including multiple discriminant analysis (MDA) and logit analysis or artificial intelligence techniques containing artificial neural networks (ANN), decision trees, and support vector machines (SVM), to secure enhanced performance. Most of the bankruptcy prediction models in academic studies have used financial ratios as main input variables. The bankruptcy of firms is associated with firm's financial states and the external economic situation. However, the inclusion of qualitative information, such as the economic atmosphere, has not been actively discussed despite the fact that exploiting only financial ratios has some drawbacks. Accounting information, such as financial ratios, is based on past data, and it is usually determined one year before bankruptcy. Thus, a time lag exists between the point of closing financial statements and the point of credit evaluation. In addition, financial ratios do not contain environmental factors, such as external economic situations. Therefore, using only financial ratios may be insufficient in constructing a bankruptcy prediction model, because they essentially reflect past corporate internal accounting information while neglecting recent information. Thus, qualitative information must be added to the conventional bankruptcy prediction model to supplement accounting information. Due to the lack of an analytic mechanism for obtaining and processing qualitative information from various information sources, previous studies have only used qualitative information. However, recently, big data analytics, such as text mining techniques, have been drawing much attention in academia and industry, with an increasing amount of unstructured text data available on the web. A few previous studies have sought to adopt big data analytics in business prediction modeling. Nevertheless, the use of qualitative information on the web for business prediction modeling is still deemed to be in the primary stage, restricted to limited applications, such as stock prediction and movie revenue prediction applications. Thus, it is necessary to apply big data analytics techniques, such as text mining, to various business prediction problems, including credit risk evaluation. Analytic methods are required for processing qualitative information represented in unstructured text form due to the complexity of managing and processing unstructured text data. This study proposes a bankruptcy prediction model for Korean small- and medium-sized construction firms using both quantitative information, such as financial ratios, and qualitative information acquired from economic news articles. The performance of the proposed method depends on how well information types are transformed from qualitative into quantitative information that is suitable for incorporating into the bankruptcy prediction model. We employ big data analytics techniques, especially text mining, as a mechanism for processing qualitative information. The sentiment index is provided at the industry level by extracting from a large amount of text data to quantify the external economic atmosphere represented in the media. The proposed method involves keyword-based sentiment analysis using a domain-specific sentiment lexicon to extract sentiment from economic news articles. The generated sentiment lexicon is designed to represent sentiment for the construction business by considering the relationship between the occurring term and the actual situation with respect to the economic condition of the industry rather than the inherent semantics of the term. The experimental results proved that incorporating qualitative information based on big data analytics into the traditional bankruptcy prediction model based on accounting information is effective for enhancing the predictive performance. The sentiment variable extracted from economic news articles had an impact on corporate bankruptcy. In particular, a negative sentiment variable improved the accuracy of corporate bankruptcy prediction because the corporate bankruptcy of construction firms is sensitive to poor economic conditions. The bankruptcy prediction model using qualitative information based on big data analytics contributes to the field, in that it reflects not only relatively recent information but also environmental factors, such as external economic conditions.

Prediction of a hit drama with a pattern analysis on early viewing ratings (초기 시청시간 패턴 분석을 통한 대흥행 드라마 예측)

  • Nam, Kihwan;Seong, Nohyoon
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.33-49
    • /
    • 2018
  • The impact of TV Drama success on TV Rating and the channel promotion effectiveness is very high. The cultural and business impact has been also demonstrated through the Korean Wave. Therefore, the early prediction of the blockbuster success of TV Drama is very important from the strategic perspective of the media industry. Previous studies have tried to predict the audience ratings and success of drama based on various methods. However, most of the studies have made simple predictions using intuitive methods such as the main actor and time zone. These studies have limitations in predicting. In this study, we propose a model for predicting the popularity of drama by analyzing the customer's viewing pattern based on various theories. This is not only a theoretical contribution but also has a contribution from the practical point of view that can be used in actual broadcasting companies. In this study, we collected data of 280 TV mini-series dramas, broadcasted over the terrestrial channels for 10 years from 2003 to 2012. From the data, we selected the most highly ranked and the least highly ranked 45 TV drama and analyzed the viewing patterns of them by 11-step. The various assumptions and conditions for modeling are based on existing studies, or by the opinions of actual broadcasters and by data mining techniques. Then, we developed a prediction model by measuring the viewing-time distance (difference) using Euclidean and Correlation method, which is termed in our study similarity (the sum of distance). Through the similarity measure, we predicted the success of dramas from the viewer's initial viewing-time pattern distribution using 1~5 episodes. In order to confirm that the model is shaken according to the measurement method, various distance measurement methods were applied and the model was checked for its dryness. And when the model was established, we could make a more predictive model using a grid search. Furthermore, we classified the viewers who had watched TV drama more than 70% of the total airtime as the "passionate viewer" when a new drama is broadcasted. Then we compared the drama's passionate viewer percentage the most highly ranked and the least highly ranked dramas. So that we can determine the possibility of blockbuster TV mini-series. We find that the initial viewing-time pattern is the key factor for the prediction of blockbuster dramas. From our model, block-buster dramas were correctly classified with the 75.47% accuracy with the initial viewing-time pattern analysis. This paper shows high prediction rate while suggesting audience rating method different from existing ones. Currently, broadcasters rely heavily on some famous actors called so-called star systems, so they are in more severe competition than ever due to rising production costs of broadcasting programs, long-term recession, aggressive investment in comprehensive programming channels and large corporations. Everyone is in a financially difficult situation. The basic revenue model of these broadcasters is advertising, and the execution of advertising is based on audience rating as a basic index. In the drama, there is uncertainty in the drama market that it is difficult to forecast the demand due to the nature of the commodity, while the drama market has a high financial contribution in the success of various contents of the broadcasting company. Therefore, to minimize the risk of failure. Thus, by analyzing the distribution of the first-time viewing time, it can be a practical help to establish a response strategy (organization/ marketing/story change, etc.) of the related company. Also, in this paper, we found that the behavior of the audience is crucial to the success of the program. In this paper, we define TV viewing as a measure of how enthusiastically watching TV is watched. We can predict the success of the program successfully by calculating the loyalty of the customer with the hot blood. This way of calculating loyalty can also be used to calculate loyalty to various platforms. It can also be used for marketing programs such as highlights, script previews, making movies, characters, games, and other marketing projects.

Comparative assessment and uncertainty analysis of ensemble-based hydrologic data assimilation using airGRdatassim (airGRdatassim을 이용한 앙상블 기반 수문자료동화 기법의 비교 및 불확실성 평가)

  • Lee, Garim;Lee, Songhee;Kim, Bomi;Woo, Dong Kook;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.761-774
    • /
    • 2022
  • Accurate hydrologic prediction is essential to analyze the effects of drought, flood, and climate change on flow rates, water quality, and ecosystems. Disentangling the uncertainty of the hydrological model is one of the important issues in hydrology and water resources research. Hydrologic data assimilation (DA), a technique that updates the status or parameters of a hydrological model to produce the most likely estimates of the initial conditions of the model, is one of the ways to minimize uncertainty in hydrological simulations and improve predictive accuracy. In this study, the two ensemble-based sequential DA techniques, ensemble Kalman filter, and particle filter are comparatively analyzed for the daily discharge simulation at the Yongdam catchment using airGRdatassim. The results showed that the values of Kling-Gupta efficiency (KGE) were improved from 0.799 in the open loop simulation to 0.826 in the ensemble Kalman filter and to 0.933 in the particle filter. In addition, we analyzed the effects of hyper-parameters related to the data assimilation methods such as precipitation and potential evaporation forcing error parameters and selection of perturbed and updated states. For the case of forcing error conditions, the particle filter was superior to the ensemble in terms of the KGE index. The size of the optimal forcing noise was relatively smaller in the particle filter compared to the ensemble Kalman filter. In addition, with more state variables included in the updating step, performance of data assimilation improved, implicating that adequate selection of updating states can be considered as a hyper-parameter. The simulation experiments in this study implied that DA hyper-parameters needed to be carefully optimized to exploit the potential of DA methods.