• Title/Summary/Keyword: predictive accuracy

Search Result 782, Processing Time 0.024 seconds

Evaluation of Subtractive Clustering based Adaptive Neuro-Fuzzy Inference System with Fuzzy C-Means based ANFIS System in Diagnosis of Alzheimer

  • Kour, Haneet;Manhas, Jatinder;Sharma, Vinod
    • Journal of Multimedia Information System
    • /
    • v.6 no.2
    • /
    • pp.87-90
    • /
    • 2019
  • Machine learning techniques have been applied in almost all the domains of human life to aid and enhance the problem solving capabilities of the system. The field of medical science has improved to a greater extent with the advent and application of these techniques. Efficient expert systems using various soft computing techniques like artificial neural network, Fuzzy Logic, Genetic algorithm, Hybrid system, etc. are being developed to equip medical practitioner with better and effective diagnosing capabilities. In this paper, a comparative study to evaluate the predictive performance of subtractive clustering based ANFIS hybrid system (SCANFIS) with Fuzzy C-Means (FCM) based ANFIS system (FCMANFIS) for Alzheimer disease (AD) has been taken. To evaluate the performance of these two systems, three parameters i.e. root mean square error (RMSE), prediction accuracy and precision are implemented. Experimental results demonstrated that the FCMANFIS model produce better results when compared to SCANFIS model in predictive analysis of Alzheimer disease (AD).

Research on Early Academic Warning by a Hybrid Methodology

  • Lun, Guanchen;Zhu, Lu;Chen, Haotian;Jeong, Dongwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.21-22
    • /
    • 2021
  • Early academic warning is considered as an inherent problem in education data mining. Early and timely concern and guidance can save a student's university career. It is widely assumed as a multi-class classification system in view of machine learning. Therefore, An accurate and precise methodical solution is a complicated task to accomplish. For this issue, we present a hybrid model employing rough set theory with a back-propagation neural network to ameliorate the predictive capability of the system with an illustrative example. The experimental results show that it is an effective early academic warning model with an escalating improvement in predictive accuracy.

  • PDF

The Study of Predictive Diagnosis Technology Development Status and Promotion Plan for Reactor Coolant Pump (원자로냉각재펌프 예측진단 기술개발 현황 및 추진방안)

  • Hee Chan Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.44-51
    • /
    • 2023
  • The RCP is one of the main components in nuclear power plants and plays an important role in circulating coolant to the RCS system. Currently, nuclear plants are monitored using various monitoring systems. However, since they operate independently according to their functional purpose, it is not able to analyze vibration and operation/performance information comprehensively, and thus failure diagnosis accuracy is limited. In addition, these systems do not provide some important information (such as fault type, parts and cause) necessary for emergency actions, but provide only alarm information. To improve these technical problems, this study proposes a diagnosis technique (M/L, Rule-based model, Data-driven model, Narrow band model) and methodology for comprehensive analysis.

Machine learning-based Predictive Model of Suicidal Thoughts among Korean Adolescents. (머신러닝 기반 한국 청소년의 자살 생각 예측 모델)

  • YeaJu JIN;HyunKi KIM
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2023
  • This study developed models using decision forest, support vector machine, and logistic regression methods to predict and prevent suicidal ideation among Korean adolescents. The study sample consisted of 51,407 individuals after removing missing data from the raw data of the 18th (2022) Youth Health Behavior Survey conducted by the Korea Centers for Disease Control and Prevention. Analysis was performed using the MS Azure program with Two-Class Decision Forest, Two-Class Support Vector Machine, and Two-Class Logistic Regression. The results of the study showed that the decision forest model achieved an accuracy of 84.8% and an F1-score of 36.7%. The support vector machine model achieved an accuracy of 86.3% and an F1-score of 24.5%. The logistic regression model achieved an accuracy of 87.2% and an F1-score of 40.1%. Applying the logistic regression model with SMOTE to address data imbalance resulted in an accuracy of 81.7% and an F1-score of 57.7%. Although the accuracy slightly decreased, the recall, precision, and F1-score improved, demonstrating excellent performance. These findings have significant implications for the development of prediction models for suicidal ideation among Korean adolescents and can contribute to the prevention and improvement of youth suicide.

Predictive Modeling of the Growth and Survival of Listeria monocytogenes Using a Response Surface Model

  • Jin, Sung-Sik;Jin, Yong-Guo;Yoon, Ki-Sun;Woo, Gun-Jo;Hwang, In-Gyun;Bahk, Gyung-Jin;Oh, Deog-Hwan
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.715-720
    • /
    • 2006
  • This study was performed to develop a predictive model for the growth kinetics of Listeria monocytogenes in tryptic soy broth (TSB) using a response surface model with a combination of potassium lactate (PL), temperature, and pH. The growth parameters, specific growth rate (SGR), and lag time (LT) were obtained by fitting the data into the Gompertz equation and showed high fitness with a correlation coefficient of $R^2{\geq}0.9192$. The polynomial model was identified as an appropriate secondary model for SGR and LT based on the coefficient of determination for the developed model ($R^2\;=\;0.97$ for SGR and $R^2\;=\;0.86$ for LT). The induced values that were calculated using the developed secondary model indicated that the growth kinetics of L. monocytogenes were dependent on storage temperature, pH, and PL. Finally, the predicted model was validated using statistical indicators, such as coefficient of determination, mean square error, bias factor, and accuracy factor. Validation of the model demonstrates that the overall prediction agreed well with the observed data. However, the model developed for SGR showed better predictive ability than the model developed for LT, which can be seen from its statistical validation indices, with the exception of the bias factor ($B_f$ was 0.6 for SGR and 0.97 for LT).

Predictive Growth Models of Bacillus cereus on Dried Laver Pyropia pseudolinearis as Function of Storage Temperature (저장온도에 따른 마른김(Pyropia pseudolinearis)의 Bacillus cereus 성장예측모델 개발)

  • Choi, Man-Seok;Kim, Ji Yoon;Jeon, Eun Bi;Park, Shin Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.5
    • /
    • pp.699-706
    • /
    • 2020
  • Predictive models in food microbiology are used for predicting microbial growth or death rates using mathematical and statistical tools considering the intrinsic and extrinsic factors of food. This study developed predictive growth models for Bacillus cereus on dried laver Pyropia pseudolinearis stored at different temperatures (5, 10, 15, 20, and 25℃). Primary models developed for specific growth rate (SGR), lag time (LT), and maximum population density (MPD) indicated a good fit (R2≥0.98) with the Gompertz equation. The SGR values were 0.03, 0.08, and 0.12, and the LT values were 12.64, 4.01, and 2.17 h, at the storage temperatures of 15, 20, and 25℃, respectively. Secondary models for the same parameters were determined via nonlinear regression as follows: SGR=0.0228-0.0069*T1+0.0005*T12; LT=113.0685-9.6256*T1+0.2079*T12; MPD=1.6630+0.4284*T1-0.0080*T12 (where T1 is the storage temperature). The appropriateness of the secondary models was validated using statistical indices, such as mean squared error (MSE<0.01), bias factor (0.99≤Bf≤1.07), and accuracy factor (1.01≤Af≤1.14). External validation was performed at three random temperatures, and the results were consistent with each other. Thus, these models may be useful for predicting the growth of B. cereus on dried laver.

The Use of FDG PET for Nodal Staging of Non-Small-Cell Lung Cancer (비소세포폐암 환자의 국소 림프절 전이 발견을 위한 FDG PET의 이용)

  • 백희종;박종호;최창운;임상무;최두환;조경자;원경준;조재일
    • Journal of Chest Surgery
    • /
    • v.32 no.10
    • /
    • pp.910-915
    • /
    • 1999
  • Background: Positron emission tomography(PEFT) using fluorine-18 deoxyglucose(FDG), showing increased FDG uptake and retention in malignant cells, has been proven to be useful in differentiating malignant from benign tissues. We indertook the prospective study to compare the accuracy of the whole-body FDG PET with that of the conventional chest computed tomography(CT) for nodal staging of non-small-cell lung cancers(NSCLC). Material and Method: FDG PET and contrast enhanced CT were performed in 36 patients with potentially resectable NSCLC. Each Imaging study was evaluated independently, and nodal stations were localized according to the AJCC regional lymph nodes mapping system. Extensive lymph node dissection(1101 nodes) of ipsi- and contralateral mediastinal nodal stations was performed at thoracotomy and/or mediastinoscopy. Image findings were compared with the histopathologic staging results and were analyzed with the McNema test(p) and Kappa value(k). Result: The sensitivity, specificity, positive predictive value, and negative predictive value of CT for ipsilateral mediastinal nodal staging were 38%, 68%, 25%, 79%, and 61%, and those of PET were 88%, 71%, 47%, 95%, and 75%(p>0.05, K=0.29). When analyzed by individual nodal group(superior, aortopulmonary window, and inferior), the sensitivity, specificity, positive predictive value, and negative predictive value of CT were 27%, 82%, 22%, 85%, and 73%, and those of PET were 60%, 87%, 92%, and 82%(p<0.05, k=0.27). Conclusion: FDG PET in addition to CT appears to be superior to CT alone for mediastinal staging of non-small cell lung cancers.

  • PDF

Influence of voxel size on cone-beam computed tomography-based detection of vertical root fractures in the presence of intracanal metallic posts

  • Yamamoto-Silva, Fernanda Paula;de Oliveira Siqueira, Claudeir Felipe;Silva, Maria Alves Garcia Santos;Fonseca, Rodrigo Borges;Santos, Ananda Amaral;Estrela, Carlos;de Freitas Silva, Brunno Santos
    • Imaging Science in Dentistry
    • /
    • v.48 no.3
    • /
    • pp.177-184
    • /
    • 2018
  • Purpose: This study was performed to evaluate the influence of voxel size and the accuracy of 2 cone-beam computed tomography (CBCT) systems in the detection of vertical root fracture (VRF) in the presence of intracanal metallic posts. Materials and Methods: Thirty uniradicular extracted human teeth were selected and randomly divided into 2 groups(VRF group, n=15; and control group, n=15). The VRFs were induced by an Instron machine, and metallic posts were placed in both groups. The scans were acquired by CBCT with 4 different voxel sizes: 0.1 mm and 0.16 mm (for the Eagle 3D V-Beam system) and 0.125 mm and 0.2 mm (for the i-CAT system) (protocols 1, 2, 3, and 4, respectively). Interobserver and intraobserver agreement was assessed using the Cohen kappa test. Sensitivity and specificity were evaluated and receiver operating characteristic analysis was performed. Results: The intraobserver coefficients indicated good (0.71) to very good (0.83) agreement, and the interobserver coefficients indicated moderate (0.57) to very good (0.80) agreement. In respect to the relationship between sensitivity and specificity, a statistically significant difference was found between protocols 1 (positive predictive value: 0.710, negative predictive value: 0.724) and 3 (positive predictive value: 0.727, negative predictive value: 0.632) (P<.05). The least interference due to artifact formation was observed using protocol 2. Conclusion: Protocols with a smaller voxel size and field of view seemed to favor the detection of VRF in teeth with intracanal metallic posts.

Sensitivity, specificity, and predictive value of cardiac symptoms assessed by emergency medical services providers in the diagnosis of acute myocardial infarction: a multi-center observational study

  • Park, Jeong Ho;Moon, Sung Woo;Kim, Tae Yun;Ro, Young Sun;Cha, Won Chul;Kim, Yu Jin;Shin, Sang Do
    • Clinical and Experimental Emergency Medicine
    • /
    • v.5 no.4
    • /
    • pp.264-271
    • /
    • 2018
  • Objective For patients with acute myocardial infarction (AMI), symptoms assessed by emergency medical services (EMS) providers have a critical role in prehospital treatment decisions. The purpose of this study was to evaluate the diagnostic accuracy of EMS provider-assessed cardiac symptoms of AMI. Methods Patients transported by EMS to 4 study hospitals from 2008 to 2012 were included. Using EMS and administrative emergency department databases, patients were stratified according to the presence of EMS-assessed cardiac symptoms and emergency department diagnosis of AMI. Cardiac symptoms were defined as chest pain, dyspnea, palpitations, and syncope. Disproportionate stratified sampling was used, and medical records of sampled patients were reviewed to identify an actual diagnosis of AMI. Using inverse probability weighting, verification bias-corrected diagnostic performance was estimated. Results Overall, 92,353 patients were enrolled in the study. Of these, 13,971 (15.1%) complained of cardiac symptoms to EMS providers. A total of 775 patients were sampled for hospital record review. The sensitivity, specificity, positive predictive value, and negative predictive value of EMS provider-assessed cardiac symptoms for the final diagnosis of AMI was 73.3% (95% confidence interval [CI], 70.8 to 75.7), 85.3% (95% CI, 85.3 to 85.4), 3.9% (95% CI, 3.6 to 4.2), and 99.7% (95% CI, 99.7 to 99.8), respectively. Conclusion We found that EMS provider-assessed cardiac symptoms had moderate sensitivity and high specificity for diagnosis of AMI. EMS policymakers can use these data to evaluate the pertinence of specific prehospital treatment of AMI.

A Comparative Study of Predictive Factors for Passing the National Physical Therapy Examination using Logistic Regression Analysis and Decision Tree Analysis

  • Kim, So Hyun;Cho, Sung Hyoun
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.3
    • /
    • pp.285-295
    • /
    • 2022
  • Objective: The purpose of this study is to use logistic regression and decision tree analysis to identify the factors that affect the success or failurein the national physical therapy examination; and to build and compare predictive models. Design: Secondary data analysis study Methods: We analyzed 76,727 subjects from the physical therapy national examination data provided by the Korea Health Personnel Licensing Examination Institute. The target variable was pass or fail, and the input variables were gender, age, graduation status, and examination area. Frequency analysis, chi-square test, binary logistic regression, and decision tree analysis were performed on the data. Results: In the logistic regression analysis, subjects in their 20s (Odds ratio, OR=1, reference), expected to graduate (OR=13.616, p<0.001) and from the examination area of Jeju-do (OR=3.135, p<0.001), had a high probability of passing. In the decision tree, the predictive factors for passing result had the greatest influence in the order of graduation status (x2=12366.843, p<0.001) and examination area (x2=312.446, p<0.001). Logistic regression analysis showed a specificity of 39.6% and sensitivity of 95.5%; while decision tree analysis showed a specificity of 45.8% and sensitivity of 94.7%. In classification accuracy, logistic regression and decision tree analysis showed 87.6% and 88.0% prediction, respectively. Conclusions: Both logistic regression and decision tree analysis were adequate to explain the predictive model. Additionally, whether actual test takers passed the national physical therapy examination could be determined, by applying the constructed prediction model and prediction rate.