• 제목/요약/키워드: prediction uncertainty

검색결과 430건 처리시간 0.029초

Entropy-based Spectrum Sensing for Cognitive Radio Networks in the Presence of an Unauthorized Signal

  • So, Jaewoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권1호
    • /
    • pp.20-33
    • /
    • 2015
  • Spectrum sensing is a key component of cognitive radio. The prediction of the primary user status in a low signal-to-noise ratio is an important factor in spectrum sensing. However, because of noise uncertainty, secondary users have difficulty distinguishing between the primary signal and an unauthorized signal when an unauthorized user exists in a cognitive radio network. To resolve the sensitivity to the noise uncertainty problem, we propose an entropy-based spectrum sensing scheme to detect the primary signal accurately in the presence of an unauthorized signal. The proposed spectrum sensing uses the conditional entropy between the primary signal and the unauthorized signal. The ability to detect the primary signal is thus robust against noise uncertainty, which leads to superior sensing performance in a low signal-to-noise ratio. Simulation results show that the proposed spectrum sensing scheme outperforms the conventional entropy-based spectrum sensing schemes in terms of the primary user detection probability.

퍼지 전문가 시스템을 이용한 고장 예측 및 진단 (Fault Prediction and Diagnosis Using Fuzzy Expert System)

  • 최성운;이영석
    • 대한안전경영과학회지
    • /
    • 제1권1호
    • /
    • pp.7-17
    • /
    • 1999
  • As the loss from break-downs and errors, which became more frequent with the growth of elaborateness, complexity and in scale of the plant and equipments, are enormous, the improvement in the reliability, maintenance, safety, and qualify become to have interest. The fault diagnosis is a systematic and unified method to find errors, which is based on the interpretation that data, subconsciously, have noises. But, as most of the methods are inferences based on binomial logic, the uncertainty is not correctly reflected. In this study, we suggest, to manage the uncertainty in the system efficiently on the point of predictive maintenance, We should use fuzzy expert system, which make the decision considering uncertainty possible by taking linguistical variable and fixed quantity by using the fuzzy theory concepts on the basis of an expert's direct observation and experience.

  • PDF

Improving streamflow and flood predictions through computational simulations, machine learning and uncertainty quantification

  • Venkatesh Merwade;Siddharth Saksena;Pin-ChingLi;TaoHuang
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.29-29
    • /
    • 2023
  • To mitigate the damaging impacts of floods, accurate prediction of runoff, streamflow and flood inundation is needed. Conventional approach of simulating hydrology and hydraulics using loosely coupled models cannot capture the complex dynamics of surface and sub-surface processes. Additionally, the scarcity of data in ungauged basins and quality of data in gauged basins add uncertainty to model predictions, which need to be quantified. In this presentation, first the role of integrated modeling on creating accurate flood simulations and inundation maps will be presented with specific focus on urban environments. Next, the use of machine learning in producing streamflow predictions will be presented with specific focus on incorporating covariate shift and the application of theory guided machine learning. Finally, a framework to quantify the uncertainty in flood models using Hierarchical Bayesian Modeling Averaging will be presented. Overall, this presentation will highlight that creating accurate information on flood magnitude and extent requires innovation and advancement in different aspects related to hydrologic predictions.

  • PDF

A SPATIAL PREDICTION THEORY FOR LONG-TERM FADING IN MOBILE RADIO COMMUNICATIONS

  • Yoo, Seong-Mo
    • ETRI Journal
    • /
    • 제15권3_4호
    • /
    • pp.27-34
    • /
    • 1994
  • There have been traditional approaches to model radio propagation path loss mechanism both theoretically ad empirically. Theoretical approach is simple to explain and effective in certain cases. Empirical approach accommodates the terrain configuration and distance between base station and mobile unit along the propagation path only. In other words, it does not accommodate natural terrain configuration over a specific area. In this paper, we propose a spatial prediction technique for the mobile radio propagation path loss accommodating complete natural terrain configuration over a specific area. Statistical uncertainty analysis is also considered.

  • PDF

불확실성과 누적환경영향하에서의 환경영향평가를 위한 방법론의 새로운 개발 (New Development of Methods for Environmental Impact Assessment Facing Uncertainty and Cumulative Environmental Impacts)

  • Pietsch, Jurgen
    • 환경영향평가
    • /
    • 제4권3호
    • /
    • pp.87-94
    • /
    • 1995
  • At both international and national levels, such as in the Rio Declaration and the EU's Fifth Environmental Action Plan, governments have committed themselves to the adoption of the precautionary principle (UNCED 1992, CEC 1992). These commitments mean that the existence of uncertainty in appraising policies and proposals for development should be acknowledged. Uncertainty arise in both the prediction of impacts and in the evaluation of their significance, particularly of those cumulative impacts which are individually insignificant but cumulatively damaging. The EC network of EIA experts, stated at their last meeting in Athens that indirect effects and the treatment of uncertainty are one of the main deficiencies of current EIA practice. Uncertainties in decision-making arise where choices have been made in the development of the policy or proposal, such as the selection of options, the justification for that choice, and the selection of different indicators to comply with different regulatory regimes. It is also likely that a weighting system for evaluating significance will have been used which may be implicit rather than explicit. Those involved in decision-making may employ different tolerances of uncertainty than members of the public, for instance over the consideration of the worst-case scenario. Possible methods for dealing with these uncertainties include scenarios, sensitivity analysis, showing points of view, decision analysis, postponing decisions and graphical methods. An understanding of the development of cumulative environmental impacts affords not only ecologic but also socio-economic investigations. Since cumulative impacts originate mainly in centres of urban or industrial development, in particular an analysis of future growth effects that might possibly be induced by certain development impacts. Not least it is seen as an matter of sustainability to connect this issue with ecological research. The serious attempt to reduce the area of uncertainty in environmental planning is a challenge and an important step towards reliable planning and sustainable development.

  • PDF

베이지안 분류기를 이용한 소프트웨어 품질 분류 (Software Quality Classification using Bayesian Classifier)

  • 홍의석
    • 한국IT서비스학회지
    • /
    • 제11권1호
    • /
    • pp.211-221
    • /
    • 2012
  • Many metric-based classification models have been proposed to predict fault-proneness of software module. This paper presents two prediction models using Bayesian classifier which is one of the most popular modern classification algorithms. Bayesian model based on Bayesian probability theory can be a promising technique for software quality prediction. This is due to the ability to represent uncertainty using probabilities and the ability to partly incorporate expert's knowledge into training data. The two models, Na$\ddot{i}$veBayes(NB) and Bayesian Belief Network(BBN), are constructed and dimensionality reduction of training data and test data are performed before model evaluation. Prediction accuracy of the model is evaluated using two prediction error measures, Type I error and Type II error, and compared with well-known prediction models, backpropagation neural network model and support vector machine model. The results show that the prediction performance of BBN model is slightly better than that of NB. For the data set with ambiguity, although the BBN model's prediction accuracy is not as good as the compared models, it achieves better performance than the compared models for the data set without ambiguity.

Advanced Computational Dissipative Structural Acoustics and Fluid-Structure Interaction in Low-and Medium-Frequency Domains. Reduced-Order Models and Uncertainty Quantification

  • Ohayon, R.;Soize, C.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권2호
    • /
    • pp.127-153
    • /
    • 2012
  • This paper presents an advanced computational method for the prediction of the responses in the frequency domain of general linear dissipative structural-acoustic and fluid-structure systems, in the low-and medium-frequency domains and this includes uncertainty quantification. The system under consideration is constituted of a deformable dissipative structure that is coupled with an internal dissipative acoustic fluid. This includes wall acoustic impedances and it is surrounded by an infinite acoustic fluid. The system is submitted to given internal and external acoustic sources and to the prescribed mechanical forces. An efficient reduced-order computational model is constructed by using a finite element discretization for the structure and an internal acoustic fluid. The external acoustic fluid is treated by using an appropriate boundary element method in the frequency domain. All the required modeling aspects for the analysis of the medium-frequency domain have been introduced namely, a viscoelastic behavior for the structure, an appropriate dissipative model for the internal acoustic fluid that includes wall acoustic impedance and a model of uncertainty in particular for the modeling errors. This advanced computational formulation, corresponding to new extensions and complements with respect to the state-of-the-art are well adapted for the development of a new generation of software, in particular for parallel computers.

선체 저항에 대한 수치 해석의 통계적 신뢰도 분석 (Statistical Reliability Analysis of Numerical Simulation for Prediction of Model-Ship Resistance)

  • 이상봉;이윤모
    • 대한조선학회논문집
    • /
    • 제51권4호
    • /
    • pp.321-327
    • /
    • 2014
  • A wide scope of numerical simulations was performed to predict model-ship resistances by using STAR-CCM+ and OpenFOAM. The numerical results were compared with experimental measurements in towing tank to analyze statistical reliability of the present simulations. Based on the normal distribution of resistance errors in 113 cases of container carriers, tankers and very large crude-oil carriers, the confidence intervals of numerical error were estimated as [-2.64%,+2.32%] and [-1.82%, +1.87%] with 95% confidence in STAR-CCM+ and OpenFOAM, respectively. The resistance errors of liquefied natural gas carriers with single- and twin-skeg were confident in the ranges of [-2.51%,+2.64%] and [-2.29%, +1.46%], respectively. The grid uncertainty of resistance coefficients for KCS was also quantitatively analyzed by using a grid verification procedure. The grid uncertainty of OpenFOAM (5.1%) was larger than 4.4% uncertainty of STAR-CCM+ although OpenFOAM provided statistically more confident results than those of STAR-CCM+. It means that a grid system verified under a specific condition does not automatically lead to statistical reliability in general cases.

Developing efficient model updating approaches for different structural complexity - an ensemble learning and uncertainty quantifications

  • Lin, Guangwei;Zhang, Yi;Liao, Qinzhuo
    • Smart Structures and Systems
    • /
    • 제29권2호
    • /
    • pp.321-336
    • /
    • 2022
  • Model uncertainty is a key factor that could influence the accuracy and reliability of numerical model-based analysis. It is necessary to acquire an appropriate updating approach which could search and determine the realistic model parameter values from measurements. In this paper, the Bayesian model updating theory combined with the transitional Markov chain Monte Carlo (TMCMC) method and K-means cluster analysis is utilized in the updating of the structural model parameters. Kriging and polynomial chaos expansion (PCE) are employed to generate surrogate models to reduce the computational burden in TMCMC. The selected updating approaches are applied to three structural examples with different complexity, including a two-storey frame, a ten-storey frame, and the national stadium model. These models stand for the low-dimensional linear model, the high-dimensional linear model, and the nonlinear model, respectively. The performances of updating in these three models are assessed in terms of the prediction uncertainty, numerical efforts, and prior information. This study also investigates the updating scenarios using the analytical approach and surrogate models. The uncertainty quantification in the Bayesian approach is further discussed to verify the validity and accuracy of the surrogate models. Finally, the advantages and limitations of the surrogate model-based updating approaches are discussed for different structural complexity. The possibility of utilizing the boosting algorithm as an ensemble learning method for improving the surrogate models is also presented.

A SE Approach for Machine Learning Prediction of the Response of an NPP Undergoing CEA Ejection Accident

  • Ditsietsi Malale;Aya Diab
    • 시스템엔지니어링학술지
    • /
    • 제19권2호
    • /
    • pp.18-31
    • /
    • 2023
  • Exploring artificial intelligence and machine learning for nuclear safety has witnessed increased interest in recent years. To contribute to this area of research, a machine learning model capable of accurately predicting nuclear power plant response with minimal computational cost is proposed. To develop a robust machine learning model, the Best Estimate Plus Uncertainty (BEPU) approach was used to generate a database to train three models and select the best of the three. The BEPU analysis was performed by coupling Dakota platform with the best estimate thermal hydraulics code RELAP/SCDAPSIM/MOD 3.4. The Code Scaling Applicability and Uncertainty approach was adopted, along with Wilks' theorem to obtain a statistically representative sample that satisfies the USNRC 95/95 rule with 95% probability and 95% confidence level. The generated database was used to train three models based on Recurrent Neural Networks; specifically, Long Short-Term Memory, Gated Recurrent Unit, and a hybrid model with Long Short-Term Memory coupled to Convolutional Neural Network. In this paper, the System Engineering approach was utilized to identify requirements, stakeholders, and functional and physical architecture to develop this project and ensure success in verification and validation activities necessary to ensure the efficient development of ML meta-models capable of predicting of the nuclear power plant response.