• Title/Summary/Keyword: prediction skill

Search Result 141, Processing Time 0.025 seconds

Typhoon Researches Using the Ieodo Ocean Research Station: Part I. Importance and Present Status of Typhoon Observation (이어도 종합해양과학기지를 활용한 태풍연구: Part I. 태풍관측의 중요성 및 현황)

  • Moon, Il-Ju;Shim, Jae-Seol;Lee, Dong Young;Lee, Jae Hak;Min, In-Ki;Lim, Kwan Chang
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.247-260
    • /
    • 2010
  • A recent dramatic increase of natural hazards in the Korean peninsular (KP) due to typhoons have raised necessities for the accurate typhoon prediction. Ieodo ocean research station (IORS) has been constructed in June 2003 at the open ocean where typhoons pass frequently, aiming to observe typhoons before the landfall to the KP and hence to improve the prediction skill. This paper investigates the importance of measurements at the IORS in the typhoon research and forecast. Analysis of the best track data in the N. W. Pacific shows that about one typhoon passes over the IORS per year on the average and 54% of the KP-landfall typhoons during 59 years (1950-2008) passed by the IORS within the range of the 150-km radius. The data observed during the event of typhoons reveals that the IORS can provide useful information for the typhoon prediction prior to the landfall (mainland: before 8-10 hrs, Jeju Island: before 4-6 hrs), which may contribute to improving the typhoon prediction skill and conducting the disaster prevention during the landfall. Since 2003, nine typhoons have influenced the IORS by strong winds above 17m/s. Among them, the typhoon Maemi (0314) was the strongest and brought the largest damages in Korea. The various oceanic and atmospheric observation data at the IORS suggest that the Maemi (0314) has kept the strong intensity until the landfall as passing over warm ocean currents, while the Ewiniar (0603) has weakened rapidly as passing over the Yellow Sea Bottom Cold Water (YSBCW), mainly due to the storm's self-induced surface cooling. It is revealed that the IORS is located in the best place for monitering the patterns of the warm currents and the YSBCW which varies in time and space.

Predicting Probability of Precipitation Using Artificial Neural Network and Mesoscale Numerical Weather Prediction (인공신경망과 중규모기상수치예보를 이용한 강수확률예측)

  • Kang, Boosik;Lee, Bongki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.485-493
    • /
    • 2008
  • The Artificial Neural Network (ANN) model was suggested for predicting probability of precipitation (PoP) using RDAPS NWP model, observation at AWS and upper-air sounding station. The prediction work was implemented for flood season and the data period is the July, August of 2001 and June of 2002. Neural network input variables (predictors) were composed of geopotential height 500/750/1000 hPa, atmospheric thickness 500-1000 hPa, X & Y-component of wind at 500 hPa, X & Y-component of wind at 750 hPa, wind speed at surface, temperature at 500/750 hPa/surface, mean sea level pressure, 3-hr accumulated precipitation, occurrence of observed precipitation, precipitation accumulated in 6 & 12 hrs previous to RDAPS run, precipitation occurrence in 6 & 12 hrs previous to RDAPS run, relative humidity measured 0 & 12 hrs before RDAPS run, precipitable water measured 0 & 12 hrs before RDAPS run, precipitable water difference in 12 hrs previous to RDAPS run. The suggested ANN has a 3-layer perceptron (multi layer perceptron; MLP) and back-propagation learning algorithm. The result shows that there were 6.8% increase in Hit rate (H), especially 99.2% and 148.1% increase in Threat Score (TS) and Probability of Detection (POD). It illustrates that the suggested ANN model can be a useful tool for predicting rainfall event prediction. The Kuipers Skill Score (KSS) was increased 92.8%, which the ANN model improves the rainfall occurrence prediction over RDAPS.

Prediction Model on Mental Health Status in Middle-aged Women of an Urban Area (일 도시 지역 중년 여성의 정신건강상태 예측모형)

  • Lee Pyong Sook;Sohn Jung Nam;Lee Yong Mi;Kang Hyun Cheol
    • Journal of Korean Academy of Nursing
    • /
    • v.35 no.2
    • /
    • pp.239-251
    • /
    • 2005
  • Purpose: This study was designed to construct a structural model for explaining mental health status in middle - aged women. Methods: The data was collected by self - reported questionnaires from 206 middle - aged women in Seoul. Data analysis was done with the SAS pc program for descriptive statistics and a PC - LISREL Program for finding the best fit model which assumes causal relationships among variables. Results: The overall fit of the hypothetical model to the data was good, but paths and variables of the model were modified by considering theoretical implications and statistical significances of parameter estimates. Thus it was modified by excluding 3 paths, The modified model showed was good fit to the data($x^2=177.55$, p=.00), GFI=0.908, AGFI=0.860, RMR=0.013, NFI=0.972, NNFI=0.982). Perceived stress, anger expression method, and self -esteem were found to have direct effects on mental health status in middle - aged women. These predictive variables of mental health status explained $66.6\%$ of the model. Conclusion: Programs to enhance mental health status in middle - aged women should include stress management skill, anger expression skill, and self -esteem enhancement skills to be effective.

Comparison of different post-processing techniques in real-time forecast skill improvement

  • Jabbari, Aida;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.150-150
    • /
    • 2018
  • The Numerical Weather Prediction (NWP) models provide information for weather forecasts. The highly nonlinear and complex interactions in the atmosphere are simplified in meteorological models through approximations and parameterization. Therefore, the simplifications may lead to biases and errors in model results. Although the models have improved over time, the biased outputs of these models are still a matter of concern in meteorological and hydrological studies. Thus, bias removal is an essential step prior to using outputs of atmospheric models. The main idea of statistical bias correction methods is to develop a statistical relationship between modeled and observed variables over the same historical period. The Model Output Statistics (MOS) would be desirable to better match the real time forecast data with observation records. Statistical post-processing methods relate model outputs to the observed values at the sites of interest. In this study three methods are used to remove the possible biases of the real-time outputs of the Weather Research and Forecast (WRF) model in Imjin basin (North and South Korea). The post-processing techniques include the Linear Regression (LR), Linear Scaling (LS) and Power Scaling (PS) methods. The MOS techniques used in this study include three main steps: preprocessing of the historical data in training set, development of the equations, and application of the equations for the validation set. The expected results show the accuracy improvement of the real-time forecast data before and after bias correction. The comparison of the different methods will clarify the best method for the purpose of the forecast skill enhancement in a real-time case study.

  • PDF

Improvement of online game matchmaking using machine learning (기계학습을 활용한 온라인게임 매치메이킹 개선방안)

  • Kim, Yongwoo;Kim, Young‐Min
    • Journal of Korea Game Society
    • /
    • v.22 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • In online games, interactions with other players may threaten player satisfaction. Therefore, matching players of similar skill levels is important for players' experience. However, with the current evaluation method which is only based on the final result of the game, newbies and returning players are difficult to be matched properly. In this study, we propose a method to improve matchmaking quality. We build machine learning models to predict the MMR of players and derive the basis of the prediction. The error of the best model was 40.4% of the average MMR range, confirming that the proposed method can immediately place players in a league close to their current skill level. In addition, the basis of predictions may help players to accept the result.

Difference of Collaboration·Empathy Skill and Adaptation of School Life according to School Bullying Types (집단따돌림 유형에 따른 협동 및 공감기술과 학교생활적응의 차이)

  • Park, Wan-Sung;Jeong, Goo-Churl
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.11
    • /
    • pp.399-408
    • /
    • 2016
  • This research was conducted to analyze the relationship among school bullying types, collaboration empathy skills, and adaptation of school life. A survey was conducted for the research, and asked 213 adolescents in middle and high schools in capital area(middle school: 106, high school: 107). Data Analysis was used a two-step cluster analysis to classify the type of bullying, explanation of a prediction variable according to the groups were analyzed by a multiple logistic regression analysis. The results of analysis of the research are as in the following. First, experience of afflicting or suffering from school bullying had negative correlation with collaboration empathy skills, and also with school life adaptation. Secondly, assailant group and victim group of school bullying was related to the lack of collaboration skill, and also related with empathy skill. Thirdly, collaboration empathy skills was influential factor on the adaptation of school life. Based on the results, collaboration empathy skills reduce the experience of bullying, and have a positive impact on the adaptation of school life. It confirmed the need for a social skills training program and discussed the implications.

MODIFIED CONVOLUTIONAL NEURAL NETWORK WITH TRANSFER LEARNING FOR SOLAR FLARE PREDICTION

  • Zheng, Yanfang;Li, Xuebao;Wang, Xinshuo;Zhou, Ta
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.6
    • /
    • pp.217-225
    • /
    • 2019
  • We apply a modified Convolutional Neural Network (CNN) model in conjunction with transfer learning to predict whether an active region (AR) would produce a ≥C-class or ≥M-class flare within the next 24 hours. We collect line-of-sight magnetogram samples of ARs provided by the SHARP from May 2010 to September 2018, which is a new data product from the HMI onboard the SDO. Based on these AR samples, we adopt the approach of shuffle-and-split cross-validation (CV) to build a database that includes 10 separate data sets. Each of the 10 data sets is segregated by NOAA AR number into a training and a testing data set. After training, validating, and testing our model, we compare the results with previous studies using predictive performance metrics, with a focus on the true skill statistic (TSS). The main results from this study are summarized as follows. First, to the best of our knowledge, this is the first time that the CNN model with transfer learning is used in solar physics to make binary class predictions for both ≥C-class and ≥M-class flares, without manually engineered features extracted from the observational data. Second, our model achieves relatively high scores of TSS = 0.640±0.075 and TSS = 0.526±0.052 for ≥M-class prediction and ≥C-class prediction, respectively, which is comparable to that of previous models. Third, our model also obtains quite good scores in five other metrics for both ≥C-class and ≥M-class flare prediction. Our results demonstrate that our modified CNN model with transfer learning is an effective method for flare forecasting with reasonable prediction performance.

Impact of a Convectively Forced Gravity Wave Drag Parameterization in Global Data Assimilation and Prediction System (GDAPS) (대류가 유도하는 중력파 항력의 모수화가 GDAPS에 미치는 영향)

  • Kim, So-Young;Chun, Hye-Yeong;Park, Byoung-Kwon;Lee, Hae-Jin
    • Atmosphere
    • /
    • v.16 no.4
    • /
    • pp.303-318
    • /
    • 2006
  • A parameterization of gravity wave drag induced by cumulus convection (GWDC) proposed by Chun and Baik is implemented in the KMA operational global NWP model (GDAPS), and effects of the GWDC on the forecast for July 2005 by GDAPS are investigated. The forecast result is compared with NCEP final analyses data (FNL) and model's own analysis data. Cloud-top gravity wave stresses are concentrated in the tropical region, and the resultant forcing by the GWDC is strong in the tropical upper troposphere and lower stratosphere. Nevertheless, the effect of the GWDC is strong in the mid- to high latitudes of Southern Hemisphere and high latitudes of Northern Hemisphere. By examining the effect of the GWDC on the amplitude of the geopotential height perturbation with zonal wavenumbers 1-3, it is found that impact of the GWDC is extended to the high latitudes through the change of planetary wave activity, which is maximum in the winter hemisphere. The GWDC reduces the amplitude of zonal wavenumber 1 but increases wavenumber 2 in the winter hemisphere. This change alleviates model biases in the zonal wind not only in the lower stratosphere where the GWDC is imposed, but also in the whole troposphere, especially in the mid- to high latitudes of Southern Hemisphere. By examining root mean square error, it is found that the GWDC parameterization improves GDAPS forecast skill in the Southern Hemisphere before 7 days and partially in the Northern Hemisphere after about 5 days.

Predictability Study of Snowfall Case over South Korea Using TIGGE Data on 28 December 2012 (TIGGE 자료를 이용한 2012년 12월 28일 한반도 강설사례 예측성 연구)

  • Lee, Sang-Min;Han, Sang-Un;Won, Hye Young;Ha, Jong-Chul;Lee, Jeong-Soon;Sim, Jae-Kwan;Lee, Yong Hee
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.1-15
    • /
    • 2014
  • This study compared ensemble mean and probability forecasts of snow depth amount associated with winter storm over South Korea on 28 December 2012 at five operational forecast centers (CMA, ECMWF, NCEP, KMA, and UMKO). And cause of difference in predicted snow depth at each Ensemble Prediction System (EPS) was investigated by using THe Observing system Research and Predictability EXperiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) data. This snowfall event occurred due to low pressure passing through South Sea of Korea. Amount of 6 hr accumulated snow depth was more than 10 cm over southern region of South Korea In this case study, ECMWF showed best prediction skill for the spatio-temporal distribution of snow depth. At first, ECMWF EPS has been consistently enhancing the indications present in ensemble mean snow depth forecasts from 7-day lead time. Secondly, its ensemble probabilities in excess of 2~5 cm/6 hour have been coincided with observation frequencies. And this snowfall case could be predicted from 5-day lead time by using 10-day lag ensemble mean 6 hr accumulated snow depth distribution. In addition, the cause of good performances at ECMWF EPS in predicted snow depth amounts was due to outstanding prediction ability of forming inversion layer with below $0^{\circ}C$ temperature in low level (below 850 hPa) according to $35^{\circ}N$ at 1-day lead time.

Inter-comparison of Prediction Skills of Multiple Linear Regression Methods Using Monthly Temperature Simulated by Multi-Regional Climate Models (다중 지역기후모델로부터 모의된 월 기온자료를 이용한 다중선형회귀모형들의 예측성능 비교)

  • Seong, Min-Gyu;Kim, Chansoo;Suh, Myoung-Seok
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.669-683
    • /
    • 2015
  • In this study, we investigated the prediction skills of four multiple linear regression methods for monthly air temperature over South Korea. We used simulation results from four regional climate models (RegCM4, SNURCM, WRF, and YSURSM) driven by two boundary conditions (NCEP/DOE Reanalysis 2 and ERA-Interim). We selected 15 years (1989~2003) as the training period and the last 5 years (2004~2008) as validation period. The four regression methods used in this study are as follows: 1) Homogeneous Multiple linear Regression (HMR), 2) Homogeneous Multiple linear Regression constraining the regression coefficients to be nonnegative (HMR+), 3) non-homogeneous multiple linear regression (EMOS; Ensemble Model Output Statistics), 4) EMOS with positive coefficients (EMOS+). It is same method as the third method except for constraining the coefficients to be nonnegative. The four regression methods showed similar prediction skills for the monthly air temperature over South Korea. However, the prediction skills of regression methods which don't constrain regression coefficients to be nonnegative are clearly impacted by the existence of outliers. Among the four multiple linear regression methods, HMR+ and EMOS+ methods showed the best skill during the validation period. HMR+ and EMOS+ methods showed a very similar performance in terms of the MAE and RMSE. Therefore, we recommend the HMR+ as the best method because of ease of development and applications.