• Title/Summary/Keyword: prediction path

Search Result 436, Processing Time 0.024 seconds

Prediction of Articulation Jack Strokes for Automatic Steering Control of a Shield TBM Using Machine Learning and Iterative Calculation (쉴드 TBM의 자동 방향제어를 위한 머신러닝과 반복계산법에 의한 중절잭 추진 거리 예측)

  • Soo-Ho Chang;Chulho Lee;Tae-Ho Kang;Soon-Wook Choi
    • Tunnel and Underground Space
    • /
    • v.34 no.5
    • /
    • pp.527-542
    • /
    • 2024
  • A fundamental study was carried out on automatic steering control necessary for autonomous operation of shield TBMs in the future. It outlines and proposes theories and algorithms for predicting the strokes of articulation jacks used in a shield TBM and calculating the three-dimensional path coordinates of the shield TBM based on these predictions. To predict the strokes of articulation jacks, two methods were applied: a machine learning model based on the random forest regressor, and an iterative calculation method to satisfy a preset allowable error. For the iterative calculation, optimization methods were applied to reduce computation time. The mean and variance of the relative errors from the iterative calculation with allowable error were found to be relatively smaller than the predictions of the machine learning model. However, even with optimization methods applied, the iterative calculation method showed limitations in the allowable error that could be applied in terms of computation time. Therefore, it would be better to apply the machine learning model when real-time calculation speed is crucial. On the other hand, when pre-calculated results can be used during construction, the iterative calculation can be applied to achieve higher accuracy.

Personalized Exhibition Booth Recommendation Methodology Using Sequential Association Rule (순차 연관 규칙을 이용한 개인화된 전시 부스 추천 방법)

  • Moon, Hyun-Sil;Jung, Min-Kyu;Kim, Jae-Kyeong;Kim, Hyea-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.195-211
    • /
    • 2010
  • An exhibition is defined as market events for specific duration to present exhibitors' main product range to either business or private visitors, and it also plays a key role as effective marketing channels. Especially, as the effect of the opinions of the visitors after the exhibition impacts directly on sales or the image of companies, exhibition organizers must consider various needs of visitors. To meet needs of visitors, ubiquitous technologies have been applied in some exhibitions. However, despite of the development of the ubiquitous technologies, their services cannot always reflect visitors' preferences as they only generate information when visitors request. As a result, they have reached their limit to meet needs of visitors, which consequently might lead them to loss of marketing opportunity. Recommendation systems can be the right type to overcome these limitations. They can recommend the booths to coincide with visitors' preferences, so that they help visitors who are in difficulty for choices in exhibition environment. One of the most successful and widely used technologies for building recommender systems is called Collaborative Filtering. Traditional recommender systems, however, only use neighbors' evaluations or behaviors for a personalized prediction. Therefore, they can not reflect visitors' dynamic preference, and also lack of accuracy in exhibition environment. Although there is much useful information to infer visitors' preference in ubiquitous environment (e.g., visitors' current location, booth visit path, and so on), they use only limited information for recommendation. In this study, we propose a booth recommendation methodology using Sequential Association Rule which considers the sequence of visiting. Recent studies of Sequential Association Rule use the constraints to improve the performance. However, since traditional Sequential Association Rule considers the whole rules to recommendation, they have a scalability problem when they are adapted to a large exhibition scale. To solve this problem, our methodology composes the confidence database before recommendation process. To compose the confidence database, we first search preceding rules which have the frequency above threshold. Next, we compute the confidences of each preceding rules to each booth which is not contained in preceding rules. Therefore, the confidence database has two kinds of information which are preceding rules and their confidence to each booth. In recommendation process, we just generate preceding rules of the target visitors based on the records of the visits, and recommend booths according to the confidence database. Throughout these steps, we expect reduction of time spent on recommendation process. To evaluate proposed methodology, we use real booth visit records which are collected by RFID technology in IT exhibition. Booth visit records also contain the visit sequence of each visitor. We compare the performance of proposed methodology with traditional Collaborative Filtering system. As a result, our proposed methodology generally shows higher performance than traditional Collaborative Filtering. We can also see some features of it in experimental results. First, it shows the highest performance at one booth recommendation. It detects preceding rules with some portions of visitors. Therefore, if there is a visitor who moved with very a different pattern compared to the whole visitors, it cannot give a correct recommendation for him/her even though we increase the number of recommendation. Trained by the whole visitors, it cannot correctly give recommendation to visitors who have a unique path. Second, the performance of general recommendation systems increase as time expands. However, our methodology shows higher performance with limited information like one or two time periods. Therefore, not only can it recommend even if there is not much information of the target visitors' booth visit records, but also it uses only small amount of information in recommendation process. We expect that it can give real?time recommendations in exhibition environment. Overall, our methodology shows higher performance ability than traditional Collaborative Filtering systems, we expect it could be applied in booth recommendation system to satisfy visitors in exhibition environment.

Discounted Cost Model of Condition-Based Maintenance Regarding Cumulative Damage of Armor Units of Rubble-Mound Breakwaters as a Discrete-Time Stochastic Process (경사제 피복재의 누적피해를 이산시간 확률과정으로 고려한 조건기반 유지관리의 할인비용모형)

  • Lee, Cheol-Eung;Park, Dong-Heon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.2
    • /
    • pp.109-120
    • /
    • 2017
  • A discounted cost model for preventive maintenance of armor units of rubble-mound breakwaters is mathematically derived by combining the deterioration model based on a discrete-time stochastic process of shock occurrence with the cost model of renewal process together. The discounted cost model of condition-based maintenance proposed in this paper can take into account the nonlinearity of cumulative damage process as well as the discounting effect of cost. By comparing the present results with the previous other results, the verification is carried out satisfactorily. In addition, it is known from the sensitivity analysis on variables related to the model that the more often preventive maintenance should be implemented, the more crucial the level of importance of system is. However, the tendency is shown in reverse as the interest rate is increased. Meanwhile, the present model has been applied to the armor units of rubble-mound breakwaters. The parameters of damage intensity function have been estimated through the time-dependent prediction of the expected cumulative damage level obtained from the sample path method. In particular, it is confirmed that the shock occurrences can be considered to be a discrete-time stochastic process by investigating the effects of uncertainty of the shock occurrences on the expected cumulative damage level with homogeneous Poisson process and doubly stochastic Poisson process that are the continuous-time stochastic processes. It can be also seen that the stochastic process of cumulative damage would depend directly on the design conditions, thus the preventive maintenance would be varied due to those. Finally, the optimal periods and scale for the preventive maintenance of armor units of rubble-mound breakwaters can be quantitatively determined with the failure limits, the levels of importance of structure, and the interest rates.

Implementation of integrated monitoring system for trace and path prediction of infectious disease (전염병의 경로 추적 및 예측을 위한 통합 정보 시스템 구현)

  • Kim, Eungyeong;Lee, Seok;Byun, Young Tae;Lee, Hyuk-Jae;Lee, Taikjin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.69-76
    • /
    • 2013
  • The incidence of globally infectious and pathogenic diseases such as H1N1 (swine flu) and Avian Influenza (AI) has recently increased. An infectious disease is a pathogen-caused disease, which can be passed from the infected person to the susceptible host. Pathogens of infectious diseases, which are bacillus, spirochaeta, rickettsia, virus, fungus, and parasite, etc., cause various symptoms such as respiratory disease, gastrointestinal disease, liver disease, and acute febrile illness. They can be spread through various means such as food, water, insect, breathing and contact with other persons. Recently, most countries around the world use a mathematical model to predict and prepare for the spread of infectious diseases. In a modern society, however, infectious diseases are spread in a fast and complicated manner because of rapid development of transportation (both ground and underground). Therefore, we do not have enough time to predict the fast spreading and complicated infectious diseases. Therefore, new system, which can prevent the spread of infectious diseases by predicting its pathway, needs to be developed. In this study, to solve this kind of problem, an integrated monitoring system, which can track and predict the pathway of infectious diseases for its realtime monitoring and control, is developed. This system is implemented based on the conventional mathematical model called by 'Susceptible-Infectious-Recovered (SIR) Model.' The proposed model has characteristics that both inter- and intra-city modes of transportation to express interpersonal contact (i.e., migration flow) are considered. They include the means of transportation such as bus, train, car and airplane. Also, modified real data according to the geographical characteristics of Korea are employed to reflect realistic circumstances of possible disease spreading in Korea. We can predict where and when vaccination needs to be performed by parameters control in this model. The simulation includes several assumptions and scenarios. Using the data of Statistics Korea, five major cities, which are assumed to have the most population migration have been chosen; Seoul, Incheon (Incheon International Airport), Gangneung, Pyeongchang and Wonju. It was assumed that the cities were connected in one network, and infectious disease was spread through denoted transportation methods only. In terms of traffic volume, daily traffic volume was obtained from Korean Statistical Information Service (KOSIS). In addition, the population of each city was acquired from Statistics Korea. Moreover, data on H1N1 (swine flu) were provided by Korea Centers for Disease Control and Prevention, and air transport statistics were obtained from Aeronautical Information Portal System. As mentioned above, daily traffic volume, population statistics, H1N1 (swine flu) and air transport statistics data have been adjusted in consideration of the current conditions in Korea and several realistic assumptions and scenarios. Three scenarios (occurrence of H1N1 in Incheon International Airport, not-vaccinated in all cities and vaccinated in Seoul and Pyeongchang respectively) were simulated, and the number of days taken for the number of the infected to reach its peak and proportion of Infectious (I) were compared. According to the simulation, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days when vaccination was not considered. In terms of the proportion of I, Seoul was the highest while Pyeongchang was the lowest. When they were vaccinated in Seoul, the number of days taken for the number of the infected to reach at its peak was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. When they were vaccinated in Pyeongchang, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. Based on the results above, it has been confirmed that H1N1, upon the first occurrence, is proportionally spread by the traffic volume in each city. Because the infection pathway is different by the traffic volume in each city, therefore, it is possible to come up with a preventive measurement against infectious disease by tracking and predicting its pathway through the analysis of traffic volume.

Seeking for a Curriculum of Dance Department in the University in the Age of the 4th Industrial Revolution (4차 산업혁명시대 대학무용학과 커리큘럼의 방향모색)

  • Baek, Hyun-Soon;Yoo, Ji-Young
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.3
    • /
    • pp.193-202
    • /
    • 2019
  • This study focuses on what changes are required as to a curriculum of dance department in the university in the age of the 4th industrial revolution. By comparing and analyzing the curricula of dance department in the five universities in Seoul, five academic subjects as to curricula of dance department, which covers what to learn for dance education in the age of the 4th industrial revolution, are presented. First, dance integrative education, the integration of creativity and science education, can be referred to as a subject that stimulates ideas and creativity and raises artistic sensitivity based on STEAM. Second, the curriculum characterized by prediction of the future prospect through Big Data can be utilized well in dealing with dance performance, career path of dance-majoring people, and job creation by analyzing public opinion, evaluation, and feelings. Third, video education. Seeing the images as modern major media tends to occupy most of the expressive area of art, dance by dint of video enables existing dance work to be created as new form of art, expanding dance boundaries in academic and performing art viewpoint. Fourth, VR and AR are essential techniques in the era of smart media. Whether upcoming dance studies are in the form of performance or education or industry, for VR and AR to be digitally applied into every relevant field, keeping with the time, learning about VR and AR is indispensable. Last, the 4th industrial revolution and the curriculum of dance art are needed to foresee the changes in the 4th industrial revolution and to educate changes, development and seeking in dance curriculum.

Extension Method of Association Rules Using Social Network Analysis (사회연결망 분석을 활용한 연관규칙 확장기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.111-126
    • /
    • 2017
  • Recommender systems based on association rule mining significantly contribute to seller's sales by reducing consumers' time to search for products that they want. Recommendations based on the frequency of transactions such as orders can effectively screen out the products that are statistically marketable among multiple products. A product with a high possibility of sales, however, can be omitted from the recommendation if it records insufficient number of transactions at the beginning of the sale. Products missing from the associated recommendations may lose the chance of exposure to consumers, which leads to a decline in the number of transactions. In turn, diminished transactions may create a vicious circle of lost opportunity to be recommended. Thus, initial sales are likely to remain stagnant for a certain period of time. Products that are susceptible to fashion or seasonality, such as clothing, may be greatly affected. This study was aimed at expanding association rules to include into the list of recommendations those products whose initial trading frequency of transactions is low despite the possibility of high sales. The particular purpose is to predict the strength of the direct connection of two unconnected items through the properties of the paths located between them. An association between two items revealed in transactions can be interpreted as the interaction between them, which can be expressed as a link in a social network whose nodes are items. The first step calculates the centralities of the nodes in the middle of the paths that indirectly connect the two nodes without direct connection. The next step identifies the number of the paths and the shortest among them. These extracts are used as independent variables in the regression analysis to predict future connection strength between the nodes. The strength of the connection between the two nodes of the model, which is defined by the number of nodes between the two nodes, is measured after a certain period of time. The regression analysis results confirm that the number of paths between the two products, the distance of the shortest path, and the number of neighboring items connected to the products are significantly related to their potential strength. This study used actual order transaction data collected for three months from February to April in 2016 from an online commerce company. To reduce the complexity of analytics as the scale of the network grows, the analysis was performed only on miscellaneous goods. Two consecutively purchased items were chosen from each customer's transactions to obtain a pair of antecedent and consequent, which secures a link needed for constituting a social network. The direction of the link was determined in the order in which the goods were purchased. Except for the last ten days of the data collection period, the social network of associated items was built for the extraction of independent variables. The model predicts the number of links to be connected in the next ten days from the explanatory variables. Of the 5,711 previously unconnected links, 611 were newly connected for the last ten days. Through experiments, the proposed model demonstrated excellent predictions. Of the 571 links that the proposed model predicts, 269 were confirmed to have been connected. This is 4.4 times more than the average of 61, which can be found without any prediction model. This study is expected to be useful regarding industries whose new products launch quickly with short life cycles, since their exposure time is critical. Also, it can be used to detect diseases that are rarely found in the early stages of medical treatment because of the low incidence of outbreaks. Since the complexity of the social networking analysis is sensitive to the number of nodes and links that make up the network, this study was conducted in a particular category of miscellaneous goods. Future research should consider that this condition may limit the opportunity to detect unexpected associations between products belonging to different categories of classification.