Abd El Fattah, Ahmed M.;Rasheed, Hayder A.;Al-Rahmani, Ahmed H.
International Journal of Concrete Structures and Materials
/
v.11
no.1
/
pp.135-149
/
2017
The prediction of the actual ultimate capacity of confined concrete columns requires partial confinement utilization under eccentric loading. This is attributed to the reduction in compression zone compared to columns under pure axial compression. Modern codes and standards are introducing the need to perform extreme event analysis under static loads. There has been a number of studies that focused on the analysis and testing of concentric columns. On the other hand, the augmentation of compressive strength due to partial confinement has not been treated before. The higher eccentricity causes smaller confined concrete region in compression yielding smaller increase in strength of concrete. Accordingly, the ultimate eccentric confined strength is gradually reduced from the fully confined value $f_{cc}$ (at zero eccentricity) to the unconfined value $f^{\prime}_c$ (at infinite eccentricity) as a function of the ratio of compression area to total area of each eccentricity. This approach is used to implement an adaptive Mander model for analyzing eccentrically loaded columns. Generalization of the 3D moment of area approach is implemented based on proportional loading, fiber model and the secant stiffness approach, in an incremental-iterative numerical procedure to achieve the equilibrium path of $P-{\varepsilon}$ and $M-{\varphi}$ response up to failure. This numerical analysis is adapted to assess the confining effect in rectangular columns confined with conventional lateral steel. This analysis is validated against experimental data found in the literature showing good correlation to the partial confinement model while rendering the full confinement treatment unsafe.
Journal of the Korea Institute of Information and Communication Engineering
/
v.22
no.8
/
pp.1055-1060
/
2018
In the wake of the 4th Industrial Revolution, the problem of career education in schools has become a big issue. While various studies are being conducted on services or technologies to effectively handle artificial intelligence and big data, in the field of education, data on students is simply processed. Therefore, in this paper, we are going to design and present career prediction programs for students using artificial intelligence and big data. Using observational data from students at the institute, the decision tree is constructed with the C4.5 algorithm known to be most intelligent and effective in the decision tree and is used to predict students' path of hope. As a result, the coefficient of kappa exceeded 0.7 and showed a fairly low average error of 0.1 degrees. As shown in this study, a number of studies and data will be deployed to help guide students in their consultation and to provide them with classroom attitudes and directions.
The Journal of Korean Institute of Communications and Information Sciences
/
v.17
no.9
/
pp.993-1000
/
1992
Recently, many researchers have found that the speaker recognition rate is high when they perform the speaker recognition using statistical processing method of orthogonal parameter, which are derived from the analysis of speech signal and contain much of the speaker's identity. This method, however, has problems caused by vocalization speed or time varying feature of speed. Thus, to solve these problems, this paper proposes two methods of speaker recognition which combine DTW algorithm with the method using orthogonal parameters extracted from $Karthumem-Lo\'{e}ve$ Transform method which applies orthogonal parameters as feature vector to ETW algorithm and the other is the method which applies orthogonal parameters to the optimal path. In addition, we compare speaker recognition rate obtained from the proposed two method with that from the conventional method of statistical process of orthogonal parameters. Orthogonal parameters used in this paper are derived from both linear prediction coefficients and partial correlation coefficients of speech signal.
The Journal of the Korea institute of electronic communication sciences
/
v.6
no.3
/
pp.343-348
/
2011
With the rapid and wide-spread use of mobile communications much attention has been focussed on propagation in the urban area crowed with buildings. It is often surrounded by hills, forests, and mountains. The importance of surface scattering interference between transmitters and receivers on the rough surfaces has been interested and investigated. Therefore, a prediction method is necessary to estimate the influence of rough surfaces on microwave radio propagation. Moreover, most of the mobile communications are performed based on the digital communication system rather than the analog one. In this case, we must pay more careful attention to the signal delay caused by the phase delay due to the multi-path propagation. In this paper we have analyzed numerically scattering of electromagnetic waves from Composite structures by using FVTD (Finite Volume Time Domain) method. We consider two different types of rough surfaces such as periodic and composite structures.
The photodissociation dynamics of CH2I2 has been studied at 304 nm by state-selective photofragment translational spectroscopy. Velocity distributions, anisotropy parameters, and relative quantum yields are obtained for the ground I(2P3/2) and spin-orbit excited state I*(2P1/2) iodine atoms, which are produced from photodissociation of CH2I2 at this wavelength. These processes are found to occur via B1 ← A1 type electronic transitions. The quantum yield of I*(2P1/2) is determined to be 0.25, indicating that the formation of ground state iodine is clearly the favored dissociation channel in the 304 nm wavelength region. From the angular distribution of dissociation products, the anisotropy parameters are determined to be β(I)=0.4 for the I(2P3/2) and β(I*)=0.55 for the I*(2P1/2) which substantially differ from the limiting value of 1.13. The positive values of anisotropy parameter, however, show that the primary processes for I and I* formation channels proceed dominantly via a transition which is parallel to I-I axis. The above results are interpreted in terms of dual path formation of iodine atoms from two different excited states, i.e., a direct and an indirect dissociation via curve crossing between these states. The translational energy distributions of recoil fragments reveal that a large fraction of the available energy goes into the internal excitation of the CH2I photofragment; < Eint > /Eavl=0.80 and 0.82 for the I and I* formation channels, respectively. The quantitative analysis for the energy partitioning of available energy into the photofragments is used to compare the experimental results with the prediction of direct impulsive model for photodissociation dynamics.
For prompt gamma ray imaging for biomedical applications and environmental radiation monitoring, we propose herein a multiple-scattering Compton camera (MSCC). MSCC consists of three or more semiconductor layers with good energy resolution, and has potential for simultaneous detection and differentiation of multiple radio-isotopes based on the measured energies, as well as three-dimensional (3D) imaging of the radio-isotope distribution. In this study, we developed an analytic simulator and a 3D image generator for a MSCC, including the physical models of the radiation source emission and detection processes that can be utilized for geometry and performance prediction prior to the construction of a real system. The analytic simulator for a MSCC records coincidence detections of successive interactions in multiple detector layers. In the successive interaction processes, the emission direction of the incident gamma ray, the scattering angle, and the changed traveling path after the Compton scattering interaction in each detector, were determined by a conical surface uniform random number generator (RNG), and by a Klein-Nishina RNG. The 3D image generator has two functions: the recovery of the initial source energy spectrum and the 3D spatial distribution of the source. We evaluated the analytic simulator and image generator with two different energetic point radiation sources (Cs-137 and Co-60) and with an MSCC comprising three detector layers. The recovered initial energies of the incident radiations were well differentiated from the generated MSCC events. Correspondingly, we could obtain a multi-tracer image that combined the two differentiated images. The developed analytic simulator in this study emulated the randomness of the detection process of a multiple-scattering Compton camera, including the inherent degradation factors of the detectors, such as the limited spatial and energy resolutions. The Doppler-broadening effect owing to the momentum distribution of electrons in Compton scattering was not considered in the detection process because most interested isotopes for biomedical and environmental applications have high energies that are less sensitive to Doppler broadening. The analytic simulator and image generator for MSCC can be utilized to determine the optimal geometrical parameters, such as the distances between detectors and detector size, thus affecting the imaging performance of the Compton camera prior to the development of a real system.
Park, Sung Nam;Son, Young Woo;Choi, Eun Joo;You, Hyung-Keun;Kim, Min Seuk
International Journal of Oral Biology
/
v.43
no.4
/
pp.223-230
/
2018
Exosomes are Nano-sized lipid vesicles secreted from mammalian cells containing diverse cellular materials such as proteins, lipids, and nucleotides. Multiple lines of evidence indicate that in saliva, exosomes and their contents such as microRNAs (miRNAs) mediate numerous cellular responses upon delivery to recipient cells. The objective of this study was to characterize the different expression profile of exosomal miRNAs in saliva samples, periodically isolated from a single periodontitis patient. Unstimulated saliva was collected from a single patient over time periods for managing periodontitis. MicroRNAs extracted from each phase were investigated for the expression of exosomal miRNAs. Salivary exosomal miRNAs were analyzed using Affymetrix miRNA arrays and prediction of target genes and pathways for its different expression performed using DIANA-mirPath, a web-based, computational tool. Following the delivery of miRNA mimics (hsa-miR-4487, -4532, and -7108-5p) into human gingival fibroblasts, the expression of pro-inflammatory cytokines and activation of the MAPK pathway were evaluated through RT-PCR and western blotting. In each phase, 13 and 43 miRNAs were found to be differently expressed $({\mid}FC{\mid}{\geq}2)$. Among these, hsa-miR-4487 $({\mid}FC{\mid}=9.292005)$ and has-miR-4532 $({\mid}FC{\mid}=18.322697)$ were highly up-regulated in the clinically severe phase, whereas hsa-miR-7108-5p $({\mid}FC{\mid}=12.20601)$ was strongly up-regulated in the clinically mild phase. In addition, the overexpression of miRNA mimics in human gingival fibroblasts resulted in a significant induction of IL-6 mRNA expression and p38 phosphorylation. The findings of this study established alterations in salivary exosomal miRNAs which are dependent on the severity of periodontitis and may act as potential candidates for the treatment of oral inflammatory diseases.
The purpose of this study is to find out quantitative vulnerability assessment about COTS(Commercial Off The Shelf) O/S based I&C System. This paper analyzed vulnerability's lifecycle and it's impact. this paper is to develop a quantitative assessment of overall cyber security risks and vulnerabilities I&C System by studying the vulnerability analysis and prediction method. The probabilistic vulnerability assessment method proposed in this study suggests a modeling method that enables setting priority of patches, threshold setting of vulnerable size, and attack path in a commercial OS-based measurement control system that is difficult to patch an immediate vulnerability.
Kim, Yeon-Joong;Kim, Tae-Woo;Yoon, Jong-Sung;Kim, In-Ho
Journal of Ocean Engineering and Technology
/
v.33
no.5
/
pp.427-434
/
2019
Artificial intelligence (AI)-aided research currently enjoys active use in a wide array of fields thanks to the rapid development of computing capability and the use of Big Data. Until now, forecasting methods were primarily based on physics models and statistical studies. Today, AI is utilized in disaster prevention forecasts by studying the relationships between physical factors and their characteristics. Current studies also involve combining AI and physics models to supplement the strengths and weaknesses of each aspect. However, prior to these studies, an optimization algorithm for the AI model should be developed and its applicability should be studied. This study aimed to improve the forecast performance by constructing a model for neural network optimization. An artificial neural network (ANN) followed the ever-changing path of a typhoon to produce similar typhoon predictions, while the optimization achieved by the neural network algorithm was examined by evaluating the activation function, hidden layer composition, and dropouts. A learning and test dataset was constructed from the available digital data of one typhoon that affected Korea throughout the record period (1951-2018). As a result of neural network optimization, assessments showed a higher degree of forecast accuracy.
Son, Juchan;Hong, Sumin;Hwang, Jeongjae;Kim, Min Kuk;Kim, Daesik
Journal of the Korean Society of Propulsion Engineers
/
v.25
no.5
/
pp.18-26
/
2021
In this work, we have developed a 1D network model aimed at predicting eigenvalues for resonance frequency analysis in a lab-scale industrial gas turbine single nozzle combustion system. Modern industrial gas turbines generally adopt combustors with very complex geometry and flow path to meet various design requirements simultaneously. The current study has developed a network model for combustion systems with backflow at the same axial location. The modeling results of resonance frequencies and mode distributions for a given system using the network model were validated from comparisons with prediction results using a 3D Helmholtz solver.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.