• Title/Summary/Keyword: prediction path

Search Result 436, Processing Time 0.026 seconds

A CTR Prediction Approach for Text Advertising Based on the SAE-LR Deep Neural Network

  • Jiang, Zilong;Gao, Shu;Dai, Wei
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1052-1070
    • /
    • 2017
  • For the autoencoder (AE) implemented as a construction component, this paper uses the method of greedy layer-by-layer pre-training without supervision to construct the stacked autoencoder (SAE) to extract the abstract features of the original input data, which is regarded as the input of the logistic regression (LR) model, after which the click-through rate (CTR) of the user to the advertisement under the contextual environment can be obtained. These experiments show that, compared with the usual logistic regression model and support vector regression model used in the field of predicting the advertising CTR in the industry, the SAE-LR model has a relatively large promotion in the AUC value. Based on the improvement of accuracy of advertising CTR prediction, the enterprises can accurately understand and have cognition for the needs of their customers, which promotes the multi-path development with high efficiency and low cost under the condition of internet finance.

Channel modeling based on multilayer artificial neural network in metro tunnel environments

  • Jingyuan Qian;Asad Saleem;Guoxin Zheng
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.557-569
    • /
    • 2023
  • Traditional deterministic channel modeling is accurate in prediction, but due to its complexity, improving computational efficiency remains a challenge. In an alternative approach, we investigated a multilayer artificial neural network (ANN) to predict large-scale and small-scale channel characteristics in metro tunnels. Simulated high-precision training datasets were obtained by combining measurement campaign with a ray tracing (RT) method in a metro tunnel. Performance on the training data was used to determine the number of hidden layers and neurons of the multilayer ANN. The proposed multilayer ANN performed efficiently (10 s for training; 0.19 ms for prediction), and accurately, with better approximation of the RT data than the single-layer ANN. The root mean square errors (RMSE) of path loss (2.82 dB), root mean square delay spread (0.61 ns), azimuth angle spread (3.06°), and elevation angle spread (1.22°) were impressive. These results demonstrate the superior computing efficiency and model complexity of ANNs.

Web document prediction using forward reference path traversal patterns (전 방향 참조 경로 탐사 패턴을 이용한 웹 문서 예측)

  • 김양규;손기락
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.112-114
    • /
    • 2004
  • 오늘날 웹을 이용하는 사용자들의 웹 검색 형태를 저장한 웹 로그 데이터들은 데이터 마이닝을 위한 중요한 자료가 되고 있다. 이들 웹 로그들로부터 사용자의 현재 행동을 기반으로 사용자가 다음에 요청할 요구를 예측할 수 있는 예측 모델을 만들 수 있다. 하지만 이들 웹 로그들은 크기가 매우 크고 분석하기가 어렵다. 이런 문제를 해결하기 위해 이미 않은 방법이 제안되었다. 그 중에서 효과적으로 예측할 수 있도록 제안된 순차적 분류 기반에 연관법칙을 적용한 예측 기법이 있다. 본 논문에서는 전방향 참조 경로 탐사 패턴 알고리즘을 적용하여 연관규칙에 기반 한 웹 문서 예측 기법을 향상시키는 모델을 제안한다.

  • PDF

Bayesian reliability prediction under event tree (Event tree하에서 베이지안 기법을 이용한 신뢰도 예측)

  • 박철순;전치혁;양희중;장수영
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1993.10a
    • /
    • pp.24-30
    • /
    • 1993
  • When modeling a complex system we use an event tree to analyze propagation of failure. An event tree cannot represent the statistical interrelationships among parameters, but it can be represented as a statistically identical influence diagram so that parameter updating can be easily performed. After updating parameters we can calculate posterior distribution of the failure rate for each path. But exact distribution requires considerably complex numerical integration. We propose an approximation method to calculate the posterior and derive the predictive distribution of the time to next failure. Finally we introduce the system which implements our methodology.

  • PDF

Prediction Models for the Path Loss in Mobile Communications (전파 경로손실 예측 모델)

  • Gu, Bon-Hui;Kim, Chae-Yeong;Mok, Jin-Dam
    • Electronics and Telecommunications Trends
    • /
    • v.11 no.2 s.40
    • /
    • pp.17-29
    • /
    • 1996
  • 본 고에서는 이동통신 시스템의 전파특성을 이해하기 위해 800~950MHz 대역에 적용되는 전파경로손실 예측모델을 소개한다. 또한 미연방통신위원회(Federal Communications Commission; FCC)의 미연방통신법전(Code of Federal Regulations; CFR) Part 90에서 규정하고 있는 전계강도 기준을 전계강도 예측모델로서 분석해보고 그 타당성을 제시한다.

Real-time impletation of active adaptive noise controller (능동 적응 소음 제어기의 실시간 구현)

  • 이종필;장영수;서진현;정찬수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.831-836
    • /
    • 1990
  • Real-time implementations of active noise controller are proposed and tested. For compensation of time delay of feed-back path, the n-step ahead prediction is applied. And predicting source noise and reflection noise respectively, reflection noise can be cancelled. For real-time processing, the DSP56001(Digital Signal Processor) is used. Experimental results show that the proposed controller is stable and of good performance.

  • PDF

Prediction of Flash Over and Characteristics Operation of Sprinkler RTI in Compartme nt Fire (아파트형 공장 구획 공간 화재시 Flash Over 예측과 Sprinkler RTI 작동특성)

  • 진복권;정수일
    • Journal of the Korea Safety Management & Science
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • In this paper, computer simulation was used for researching into the estimate of flash over result from compartment fire and the characteristics operation of sprinkler RTI. Computing simulation, we analyzed and verified the path of the flame in compartment fire and the adaptation of sprinkler system concerned with sprinkler RTI.

Expressway Travel Time Prediction Using K-Nearest Neighborhood (KNN 알고리즘을 활용한 고속도로 통행시간 예측)

  • Shin, Kangwon;Shim, Sangwoo;Choi, Keechoo;Kim, Soohee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1873-1879
    • /
    • 2014
  • There are various methodologies to forecast the travel time using real-time data but the K-nearest neighborhood (KNN) method in general is regarded as the most one in forecasting when there are enough historical data. The objective of this study is to evaluate applicability of KNN method. In this study, real-time and historical data of toll collection system (TCS) traffic flow and the dedicated short range communication (DSRC) link travel time, and the historical path travel time data are used as input data for KNN approach. The proposed method investigates the path travel time which is the nearest to TCS traffic flow and DSRC link travel time from real-time and historical data, then it calculates the predicted path travel time using weight average method. The results show that accuracy increased when weighted value of DSRC link travel time increases. Moreover the trend of forecasted and real travel times are similar. In addition, the error in forecasted travel time could be further reduced when more historical data could be available in the future database.

Routing Protocol for Hybrid Ad Hoc Network using Energy Prediction Model (하이브리드 애드 혹 네트워크에서의 에너지 예측모델을 이용한 라우팅 알고리즘)

  • Kim, Tae-Kyung
    • Journal of Internet Computing and Services
    • /
    • v.9 no.5
    • /
    • pp.165-173
    • /
    • 2008
  • Hybrid ad hoc networks are integrated networks referred to Home Networks, Telematics and Sensor networks can offer various services. Specially, in ad hoc network where each node is responsible for forwarding neighbor nodes' data packets, it should net only reduce the overall energy consumption but also balance individual battery power. Unbalanced energy usage will result in earlier node failure in overloaded nodes. it leads to network partitioning and reduces network lifetime. Therefore, this paper studied the routing protocol considering efficiency of energy. The suggested algorithm can predict the status of energy in each node using the energy prediction model. This can reduce the overload of establishing route path and balance individual battery power. The suggested algorithm can reduce power consumption as well as increase network lifetime.

  • PDF

A Study on the Design and Implementation of System for Predicting Attack Target Based on Attack Graph (공격 그래프 기반의 공격 대상 예측 시스템 설계 및 구현에 대한 연구)

  • Kauh, Janghyuk;Lee, Dongho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.79-92
    • /
    • 2020
  • As the number of systems increases and the network size increases, automated attack prediction systems are urgently needed to respond to cyber attacks. In this study, we developed four types of information gathering sensors for collecting asset and vulnerability information, and developed technology to automatically generate attack graphs and predict attack targets. To improve performance, the attack graph generation method is divided into the reachability calculation process and the vulnerability assignment process. It always keeps up to date by starting calculations whenever asset and vulnerability information changes. In order to improve the accuracy of the attack target prediction, the degree of asset risk and the degree of asset reference are reflected. We refer to CVSS(Common Vulnerability Scoring System) for asset risk, and Google's PageRank algorithm for asset reference. The results of attack target prediction is displayed on the web screen and CyCOP(Cyber Common Operation Picture) to help both analysts and decision makers.