• Title/Summary/Keyword: prediction path

Search Result 436, Processing Time 0.026 seconds

User Similarity-based Path Prediction Method (사용자 유사도 기반 경로 예측 기법)

  • Nam, Sumin;Lee, Sukhoon
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.12
    • /
    • pp.29-38
    • /
    • 2019
  • A path prediction method using lifelog requires a large amount of training data for accurate path prediction, and the path prediction performance is degraded when the training data is insufficient. The lack of training data can be solved using data of other users having similar user movement patterns. Therefore, this paper proposes a path prediction algorithm based on user similarity. The proposed algorithm learns the path in a triple grid pattern and measures the similarity between users using the cosine similarity technique. Then, it predicts the path with applying measured similarity to the learned model. For the evaluation, we measure and compare the path prediction accuracy of proposed method with the existing algorithms. As a result, the proposed method has 66.6% accuracy, and it is evaluated that its accuracy is 1.8% higher than other methods.

Maritime region segmentation and segment-based destination prediction methods for vessel path prediction (선박 이동 경로 예측을 위한 해상 영역 분할 및 영역 단위 목적지 예측 방법)

  • Kim, Jonghee;Jung, Chanho;Kang, Dokeun;Lee, Chang Jin
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.661-664
    • /
    • 2020
  • In this paper, we propose a maritime region segmentation method and a segment-based destination prediction method for vessel path prediction. In order to perform maritime segmentation, clustering on destination candidates generated from the past paths is conducted. Then the segment-based destination prediction is followed. For destination prediction, different prediction methods are applied according to whether the current region is linear or not. In the linear domain, the vessel is regarded to move constantly, and linear prediction is applied. In the nonlinear domain with an uncertainty, we assume that the vessel moves similarly to the most similar past path. Experimental results show that applying the linear prediction and the prediction method using a similar path differently depending on the linearity and the uncertainty of the path is better than applying one of them alone.

Prediction Model of Propagation Path Loss of the Free Space in the Sea (해수면 자유공간의 전파경로손실 예측 모델)

  • 류광진;박창균
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.579-584
    • /
    • 2003
  • All of propagation path loss prediction models, which have been presented up to date, are oかy for ground living space. In reality, sea surface free space is different from ground living space in physical hierarchical structure. If the propagation path prediction model for ground living space is applied to the sea surface free space, propagation path loss will be smaller than actual value, while the maximum service straight line will become shorter. Thus this paper proposed and simulated the propagation path loss prediction model for predicting propagation path loss more accurately in sea surface free space, with its focus on CDMA mobile communication frequency band. Then the simulation results were compared to actual survey to verify its practicality.

A Path Fragment Management Structure for Fast Projection Candidate Selection of the Path Prediction Algorithm (경로 예측 알고리즘의 빠른 투영 후보 선택을 위한 경로 단편 관리 구조)

  • Jeong, Dongwon;Lee, Sukhoon;Baik, Doo-Kwon
    • Journal of KIISE
    • /
    • v.42 no.2
    • /
    • pp.145-154
    • /
    • 2015
  • This paper proposes an enhanced projection candidate selection algorithm to improve the performance of the existing path prediction algorithm. Various user path prediction algorithms have previously been developed, but those algorithms are inappropriate for a real-time and close user path prediction environment. To resolve this issue, a new prediction algorithm has been proposed, but several problems still remain. In particular, this algorithm should be enhanced to provide much faster processing performance. The major cause of the high processing time of the previous path prediction algorithm is the high time complexity of its projection candidate selection. Therefore, this paper proposes a new path fragment management structure and an improved projection candidate selection algorithm to improve the processing speed of the existing projection candidate selection algorithm. This paper also shows the effectiveness of the algorithm herein proposed through a comparative performance evaluation.

Planning of Safe and Efficient Local Path based on Path Prediction Using a RGB-D Sensor (RGB-D센서 기반의 경로 예측을 적용한 안전하고 효율적인 지역경로 계획)

  • Moon, Ji-Young;Chae, Hee-Won;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.2
    • /
    • pp.121-128
    • /
    • 2018
  • Obstacle avoidance is one of the most important parts of autonomous mobile robot. In this study, we proposed safe and efficient local path planning of robot for obstacle avoidance. The proposed method detects and tracks obstacles using the 3D depth information of an RGB-D sensor for path prediction. Based on the tracked information of obstacles, the paths of the obstacles are predicted with probability circle-based spatial search (PCSS) method and Gaussian modeling is performed to reduce uncertainty and to create the cost function of caution. The possibility of collision with the robot is considered through the predicted path of the obstacles, and a local path is generated. This enables safe and efficient navigation of the robot. The results in various experiments show that the proposed method enables robots to navigate safely and effectively.

Path Loss Prediction Using an Ensemble Learning Approach

  • Beom Kwon;Eonsu Noh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.2
    • /
    • pp.1-12
    • /
    • 2024
  • Predicting path loss is one of the important factors for wireless network design, such as selecting the installation location of base stations in cellular networks. In the past, path loss values were measured through numerous field tests to determine the optimal installation location of the base station, which has the disadvantage of taking a lot of time to measure. To solve this problem, in this study, we propose a path loss prediction method based on machine learning (ML). In particular, an ensemble learning approach is applied to improve the path loss prediction performance. Bootstrap dataset was utilized to obtain models with different hyperparameter configurations, and the final model was built by ensembling these models. We evaluated and compared the performance of the proposed ensemble-based path loss prediction method with various ML-based methods using publicly available path loss datasets. The experimental results show that the proposed method outperforms the existing methods and can predict the path loss values accurately.

A Time Prediction Model of Cursor Movement with Path Constraints (궤도상을 이동하는 커서 이동시간의 예측 모델)

  • Hong, Seung-Kweon;Kim, Sung-Il
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.4
    • /
    • pp.334-340
    • /
    • 2005
  • A mouse is an important input device that is used in most of all computer works. A mouse control time prediction model was proposed in this study. Especially, the model described the time of mouse control that made a cursor to move within path constraints. The model was developed by a laboratory experiment. Cursor movement times were measured in 36 task conditions; 3 levels of path length, 3 levels of path width and 4 levels of target's width. 12 subjects participated in all conditions. The time of cursor movement with path constraints could be better explained by the combination of Fitts' law with steering law($r^2=0.947$) than by the other models; Fitts' law($r^2=0.740$), Steering law($r^2=0.633$) and Crossman's model($r^2=0.897$). The proposed model is expected to be used in menu design or computer game design.

Performance Analysis of Pattern/Path Hybrid Branch Prediction Strategy (패턴/패스 통합 분기 예측 전략의 성능 분석)

  • 조경산
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.3
    • /
    • pp.17-28
    • /
    • 1999
  • Recently studies have shown that conditional branches can be accurately predicted by recording the path leading up to the branch. But path predictors are more complex and uncompatible with existing pattern branch predictors. In order to solve these problems, we propose a simple path branch predictor(SPBP) that hashes together two most recent branch instruction addresses. In addition, we propose a pattern/path hybrid branch predictor composed of the SPBP and existing pattern branch predictors. Through the trace-driven simulation of six benchmark programs, the performance improvement by the proposed pattern/path hybrid branch prediction is analysed and validated. The proposed predictor can improve the prediction accuracy from 94.21% to 95.03%.

  • PDF

Prediction Of Vibrating Panel's Radiating Noise By Transfer Path Analysis (전달경로해석법에 의한 진동하는 판넬의 방사 소음 예측)

  • Oh, Jae-Eung;Lee, Sun-Hun;Jeong, Un-Chang;Kim, Jin-Su;Lee, You-Yup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.292-293
    • /
    • 2014
  • Transfer Path Analysis is technique predicting transmitted energy through each path. Using the Transfer Path Analysis, structure-borne noise and air-borne noise can be predicted from the system. In this study, however, the Transfer Path Analysis to target only the structure-borne noise due to the noise radiated from the vibrating panel was performed. Predicted noise by the Transfer Path Analysis and measured noise by the experiment were a high correlation. We confirmed the validity of the Transfer Path Analysis through the analysis of these results, showed how to apply the Transfer Path Analysis.

  • PDF

A New Vessel Path Prediction Method Based on Anticipation of Acceleration of Vessel (가속도 예측 기반 새로운 선박 이동 경로 예측 방법)

  • Kim, Jonghee;Jung, Chanho;Kang, Dokeun;Lee, Chang Jin
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1176-1179
    • /
    • 2020
  • Vessel path prediction methods generally predict the latitude and longitude of a future location directly. However, in the case of direct prediction, errors could be large since the possible output range is too broad. In addition, error accumulation could occur since recurrent neural networks-based methods employ previous predicted data to forecast future data. In this paper, we propose a vessel path prediction method that does not directly predict the longitude and latitude. Instead, the proposed method predicts the acceleration of the vessel. Then the acceleration is employed to generate the velocity and direction, and the values decide the longitude and latitude of the future location. In the experiment, we show that the proposed method makes smaller errors than the direct prediction method, while both methods employ the same model.