라이프로그를 이용한 경로 예측 기법은 정확한 경로 예측을 위하여 많은 양의 학습 데이터를 요구하며, 학습 데이터가 부족할 경우 경로 예측 성능이 저하된다. 학습 데이터 부족은 사용자의 이동 패턴이 유사한 다른 사용자의 데이터를 이용하여 해결이 가능하다. 따라서 이 논문은 사용자 유사도 기반 경로 예측 알고리즘을 제안한다. 이를 위하여 제안 알고리즘은 경로를 3단 그리드 패턴으로 학습하고 코사인 유사도 기법을 이용하여 사용자 간 유사도를 측정한다. 이후, 측정된 유사도를 학습된 모델에 적용하여 경로를 예측한다. 평가를 위하여 기존 경로 예측 기법들과 제안 기법의 경로 예측 정확도를 측정 및 비교한다. 그 결과, 제안 기법의 정확도는 66.6%로 다른 기법들에 비해 평균 1.8% 더 높은 정확도를 가진 것으로 평가된다.
본 논문에서 우리는 선박의 이동 경로를 예측하기 위하여, 해상 영역을 분할하고, 분할된 영역을 기반으로 선박의 목적지를 예측하는 방법을 제안한다. 해상 영역을 분할하기 위하여 과거 이동 경로를 토대로 생성된 목적지 후보들을 군집화한다. 그리고, 선박이 이동할 목적지 영역을 예측하기 위해서 현재 위치에서 주어진 경로의 선형 여부와 향후 예측 시간에 따른 불확실성에 따라 다른 예측 방법을 적용한다. 예측에 사용하는 방법에는 선형 영역에서는 등속 운동을 가정한 선형 예측 방법, 불확실성이 높은 비선형 영역에서는 과거 경로 중 유사한 경로와 비슷한 움직임을 보일 것이라고 가정한 유사 경로 이용 예측 방법을 사용한다. 실험 결과에서 해당 방법이 선형 예측, 유사 경로 이용 예측 방법을 단독으로 적용하는 것에 비해 더 우수함을 보인다.
지금까지 제안된 전파경로손실 예측모델 모두는 지표면 생활공간을 대상으로 하였을 뿐이다. 실제 해수면 자유공간은 지표면 생활공간과 물리적 계층구조가 다르다. 따라서 지표면 생활공간을 대상으로 한 전파경로손실 예측모델을 해수면 자유공간에 적용하는 경우, 전파경로손실은 실측값보다 더 적고, 한편 서비스 가능 최대 직선거리는 더 짧게 예측된다. 그러므로 본 연구에서는 CDMA방식 이동 통신 주파수대역을 중심으로 해수면 자유공간에서의 전파경로손실을 보다 정확히 예측하기 위한 모델을 제안하여 시뮬레이션하고 이를 현장 실측결과와 비교함으로써 그 실용성을 검증한다.
이 논문에서는 기존 경로 예측 알고리즘의 처리 속도를 향상시킬 수 있는 개선된 투영 후보 선택 알고리즘을 제안한다. 지금까지 다양한 사용자 이동 경로 예측 알고리즘이 개발되었으나 실시간 근거리 예측 환경에 적합하지 않다. 이러한 문제점을 해결하기 위해 새로운 예측 알고리즘이 제안되었으나 몇 가지 문제점을 지닌다. 특히 보다 빠른 처리 속도를 제공할 수 있도록 개선되어야 한다. 기존 예측 알고리즘의 높은 처리 시간의 주된 원인은 투영 후보 선택 연산의 높은 시간 복잡도이다. 따라서 이 논문에서는 기존 투영 후보 선택 알고리즘의 처리 속도를 개선할 수 있는 새로운 경로 단편 관리 구조와 향상된 투영 후보 선택 알고리즘을 제안한다. 또한 비교 평가를 통해 이 논문에서 제안한 알고리즘이 효과적임을 보인다.
Obstacle avoidance is one of the most important parts of autonomous mobile robot. In this study, we proposed safe and efficient local path planning of robot for obstacle avoidance. The proposed method detects and tracks obstacles using the 3D depth information of an RGB-D sensor for path prediction. Based on the tracked information of obstacles, the paths of the obstacles are predicted with probability circle-based spatial search (PCSS) method and Gaussian modeling is performed to reduce uncertainty and to create the cost function of caution. The possibility of collision with the robot is considered through the predicted path of the obstacles, and a local path is generated. This enables safe and efficient navigation of the robot. The results in various experiments show that the proposed method enables robots to navigate safely and effectively.
경로 손실(Path Loss)을 예측하는 것은 셀룰러 네트워크(Cellular Network)에서 기지국(Base Station) 의 설치 위치 선정 등 무선망 설계에 중요한 요인 중 하나다. 기존에는 기지국의 최적 설치 위치를 결정하기 위해 수많은 현장 테스트(Field Tests)를 통해 경로 손실 값을 측정했다. 따라서 측정에 많은 시간이 소요된다는 단점이 있었다. 이러한 문제를 해결하기 위해 본 연구에서는 머신러닝(Machine Learning, ML) 기반의 경로 손실 예측 방법을 제안한다. 특히, 경로 손실 예측 성능을 향상시키기 위해서 앙상블 학습(Ensemble Learning) 접근법을 적용하였다. 부트스트랩 데이터 세트(Bootstrap Dataset)을 활용하여 서로 다른 하이퍼파라미터(Hyperparameter) 구성을 갖는 모델들을 얻고, 이 모델들을 앙상블하여 최종 모델을 구축했다. 인터넷상에 공개된 경로 손실 데이터 세트를 활용하여 제안하는 앙상블 기반 경로 손실 예측 방법과 다양한 ML 기반 방법들의 성능을 평가 및 비교했다. 실험 결과, 제안하는 방법이 기존 방법들보다 우수한 성능을 달성하였으며, 경로 손실 값을 가장 정확하게 예측할 수 있다는 것을 입증하였다.
A mouse is an important input device that is used in most of all computer works. A mouse control time prediction model was proposed in this study. Especially, the model described the time of mouse control that made a cursor to move within path constraints. The model was developed by a laboratory experiment. Cursor movement times were measured in 36 task conditions; 3 levels of path length, 3 levels of path width and 4 levels of target's width. 12 subjects participated in all conditions. The time of cursor movement with path constraints could be better explained by the combination of Fitts' law with steering law($r^2=0.947$) than by the other models; Fitts' law($r^2=0.740$), Steering law($r^2=0.633$) and Crossman's model($r^2=0.897$). The proposed model is expected to be used in menu design or computer game design.
Recently studies have shown that conditional branches can be accurately predicted by recording the path leading up to the branch. But path predictors are more complex and uncompatible with existing pattern branch predictors. In order to solve these problems, we propose a simple path branch predictor(SPBP) that hashes together two most recent branch instruction addresses. In addition, we propose a pattern/path hybrid branch predictor composed of the SPBP and existing pattern branch predictors. Through the trace-driven simulation of six benchmark programs, the performance improvement by the proposed pattern/path hybrid branch prediction is analysed and validated. The proposed predictor can improve the prediction accuracy from 94.21% to 95.03%.
Transfer Path Analysis is technique predicting transmitted energy through each path. Using the Transfer Path Analysis, structure-borne noise and air-borne noise can be predicted from the system. In this study, however, the Transfer Path Analysis to target only the structure-borne noise due to the noise radiated from the vibrating panel was performed. Predicted noise by the Transfer Path Analysis and measured noise by the experiment were a high correlation. We confirmed the validity of the Transfer Path Analysis through the analysis of these results, showed how to apply the Transfer Path Analysis.
선박의 이동 경로를 예측하는 기존의 방법들은 일반적으로 위도와 경도를 직접 예측한다. 하지만, 위도와 경도를 직접 예측할 경우, 예측 모델이 출력 가능한 범위가 상당히 넓어서 예측 오차가 매우 크게 발생할 수 있다. 또한, 순환 신경망 모델 기반의 예측에서는 이전 예측 위치도 다음 위치를 예측하기 위해 사용되기 때문에 오차가 누적되는 현상도 쉽게 발생할 수 있다. 이에 따라, 제안하는 방법에서는 위도와 경도를 직접 예측하지 않고, 선박의 가속도를 예측하여, 향후 속도와 방향을 결정하고, 그 결과로 위도와 경도가 예측되는 방법을 제안한다. 실험 결과에서는 같은 순환 신경망 모델을 사용했을 때, 제안하는 방법이 기존의 직접적으로 위도와 경도를 예측하는 방법에 비해 더 적은 오차를 발생시킴을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.