• Title/Summary/Keyword: prediction of settlement

Search Result 264, Processing Time 0.025 seconds

Development of a Neural Network Expert System for Safety Analysis of Structures Adjacent to Tunnel Excavation Sites Focused on Development and Reliability Evaluation of Expert System (터널굴착 현장에 인접한 지상구조물의 안전성 평가용 전문가 시스템의 개발 (1) -전문가 시스템 개발 및 신뢰성 검증을 중심으로)

  • 배규진;신휴성
    • Geotechnical Engineering
    • /
    • v.14 no.2
    • /
    • pp.107-126
    • /
    • 1998
  • Ground settlements induced by tunnel excavation cause the foundations of the neighboring building structures to deform. An expert system called NESASS( Neural network Expert System for Adjacent Structure Safety analysis) was developed to analyze the structural safety of such building structures. NESASS predicts the trend of ground settlements resulting from tunnel excavation and carries out a safety analysis for building structures on the basis of the predicted ground settlements. Using neural network technique. the NESASS learns the database consisting of the measured ground settlements collected from numerous actual fields and infers a settlement trend at the field of interest. The NESASS calculates the magnitudes of angular distortion, deflection ratio, and differential settlement of the structure. and in turn, determines the safety of the structure. In addition, the NESASS predicts the patterns of cracks to be formed in the structure, using Dulacska model for crack evaluation. In this study, the ground settlements measured from Seoul subway construction sites were collected and classified with respect to the major factors influencing ground settlement. Subsequently, a database of ground settlement due to tunnel excavation was built. A parametric study was performed to select the optimal neural network model for the database. A comparison of the ground settlement predicted by the NESASS with the measured ones indicates that the NESASS leads to reasonable predictions. The results of confidence evaluation for safety evaluation system of the NESASS are presented in this paper.

  • PDF

Characteristics of Bearing Capacity and Reliability-based Evaluation of Pile-Driving Formulas for H Pile (H-pile의 지지력 특성 및 동역학적 공식의 신뢰도 평가)

  • 오세욱;이준대
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.81-88
    • /
    • 2003
  • Recently, pile foundations were constructed in rough or soft ground than ground of well condition thus it is important that prediction of ultimate bearing capacity and calculation of proper safety factor applied pile foundation design. This study were performed to dynamic loading tests for the thirty two piles at four different construction sites and selected pile at three site were performed to static loading tests and then compare with measured value and value of static and dynamic loading tests. The load-settlement curve form the dynamic loading tests by CAPWAP was very similar to the results obtained from the static load tests. Based on dynamic and static loading tests, the reliability of pile-driving formula were analyzed and then suggested with proper safety factor for prediction of allowable bearing capacity in this paper.

Application of genetic Algorithm to the Back Analysis of the Underground Excavation System (지하굴착의 역해석에 대한 유전알고리즘의 적용)

  • 장찬수;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.65-84
    • /
    • 2002
  • The Observational Method proposed by Terzaghi can be applied for the safe and economic construction projects where the exact prediction of the behavior of the structures is difficult as in the underground excavation. The method consists of measuring lateral displacement, ground settlement and axial force of supports in the earlier stage of the construction and back analysis technique to find the best fit design parameters such as earth pressure coefficient, subgrade reaction etc, which will minimize the gap between calculated displacement and measured displacement. With the results, more reliable prediction of the later stage can be obtained. In this study, back analysis programs using the Direct Method, based on the Hill Climbing Method were made and evaluated, and to overcome the limits of the method, Genetic Algorithm(GA) was applied and tested for the actual construction cases.

  • PDF

A study on Development of Artificial Neural Network (ANN) for Preliminary Design of Urban Deep Ex cavation and Tunnelling (도심지 지하굴착 및 터널시공 예비설계를 위한 인공신경망 개발에 관한 연구)

  • Yoo, Chungsik;Yang, Jaewon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.11-23
    • /
    • 2020
  • In this paper development artificial neural networks (ANN) for preliminary design and prediction of urban tunnelling and deep excavation-induced ground settlement was presented. In order to form training and validation data sets for the ANN development, field design and measured data were collected for various tunnelling and deep-excavation sites. The field data were then used as a database for the ANN training. The developed ANN was validated against a testing set and the unused field data in terms of statistical parameters such as R2, RMSE, and MAE. The practical use of ANN was demonstrated by applying the developed ANN to hypothetical conditions. It was shown that the developed ANN can be effectively used as a tool for preliminary excavation design and ground settlement prediction for urban excavation problems.

Nonlinear regression methods and genetic algorithms for estimation of compression index of clays using toughness limit

  • Satoru Shimobe;Eyyub Karakan;Alper Sezer
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.371-382
    • /
    • 2024
  • Measurement or prediction of compression index (Cc) of soils is essential for assessment of total and differential settlement of structures. It is a well-known fact that this parameter is controlled by several index identifiers of soil including initial void ratio, Atterberg limits, overconsolidation ratio, specific gravity, etc. Many studies in the past proposed relationships for prediction of Cc based on different index properties. Therefore, this study aims to present a comparison of previously proposed equations for estimation of Cc. Data from literature was compiled, and a total of 90 and 623 test results on remolded and undisturbed specimens were used to question the validity of previously proposed equations. Nevertheless, the modeling ability of 7 and 12 equations for estimation of Cc of remolded and undisturbed soils were questioned by use of compiled data. Moreover, new empirical relationships based on initial void ratio and toughness limit for prediction of Cc was proposed by use of nonlinear multivariable regression and evolutionary based regression analyses. The results are promising-the performances of models established are quite acceptable, which are verified by statistical analyses.

Intelligent optimal grey evolutionary algorithm for structural control and analysis

  • Z.Y. Chen;Yahui Meng;Ruei-Yuan Wang;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.33 no.5
    • /
    • pp.365-374
    • /
    • 2024
  • This paper adopts a new approach in which nonlinear vibrations can be controlled using fuzzy controllers by optimal grey evolutionary algorithm. If the fuzzy controller cannot stabilize the systems, then the high frequency is injected into the system to assist the controller, and the system is asymptotically stabilized by adjusting the parameters. This paper uses the GM (grey model) and the neural network prediction model. The structure of the neural network is improved from a single factor, and multiple data inputs are extended to various factors and numerous data inputs. The improved model expands the applicable range of uncontrolled elements and improves the accuracy of controlled prediction, using the model that has been trained and stabilized by multiple learning. The simulation results show that the improved gray neural network model has higher prediction accuracy and reliability than the traditional GM model, improving controlled management and pre-control ability. In the combined prediction, the time series parameters and the predicted values obtained from the GM (1,1) (Grey Model of first order and one variable) are simultaneously used as the input terms of the neural network, considering the influence of the non-equal spacing of the data, which makes the results of the combined gray neural network model more rationalized. By adjusting the model structure and system parameters to simulate and analyze the controlled elements, the corresponding risk change trend graphs and prediction numerical calculation results are obtained, which also realize the effective prediction of controlled elements. According to the controlled warning principle and objective, the fuzzy evaluation method establishes the corresponding early warning response method. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage.

Comparison of solar power prediction model based on statistical and artificial intelligence model and analysis of revenue for forecasting policy (통계적 및 인공지능 모형 기반 태양광 발전량 예측모델 비교 및 재생에너지 발전량 예측제도 정산금 분석)

  • Lee, Jeong-In;Park, Wan-Ki;Lee, Il-Woo;Kim, Sang-Ha
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.355-363
    • /
    • 2022
  • Korea is pursuing a plan to switch and expand energy sources with a focus on renewable energy with the goal of becoming carbon neutral by 2050. As the instability of energy supply increases due to the intermittent nature of renewable energy, accurate prediction of the amount of renewable energy generation is becoming more important. Therefore, the government has opened a small-scale power brokerage market and is implementing a system that pays settlements according to the accuracy of renewable energy prediction. In this paper, a prediction model was implemented using a statistical model and an artificial intelligence model for the prediction of solar power generation. In addition, the results of prediction accuracy were compared and analyzed, and the revenue from the settlement amount of the renewable energy generation forecasting system was estimated.

Machine Learning Process for the Prediction of the IT Asset Fault Recovery (IT자산 장애처리의 사전 예측을 위한 기계학습 프로세스)

  • Moon, Young-Joon;Rhew, Sung-Yul;Choi, Il-Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.4
    • /
    • pp.281-290
    • /
    • 2013
  • The IT asset is a core part that supports the management objective of an organization, and the fast settlement of the IT asset fault is very important. In this study, a fault recovery prediction technique is proposed, which uses the existing fault data to address the IT asset fault. The proposed fault recovery prediction technique is as follows. First, the existing fault recovery data were pre-processed and classified by fault recovery type; second, a rule was established for the keyword mapping of the classified fault recovery types and reported data; and third, a machine learning process that allows the prediction of the fault recovery method based on the established rule was presented. To verify the effectiveness of the proposed machine learning process, company A's 33,000 computer fault data for the duration of six months were tested. The hit rate for fault recovery prediction was approximately 72%, and it increased to 81% via continuous machine learning.

3-Dimensional Tunnel Analyses for the Prediction of Fault Zones (파쇄대 예측을 위한 터널의 3차원 수치해석)

  • 이인모;김돈희;이석원;박영진;안형준
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.99-112
    • /
    • 1999
  • When there exists a fault zone ahead of the tunnel face and a tunnel is excavated without perceiving its existence, it will cause stress concentration in the region between the tunnel face and the fault zone because of the influence of the fault zone on the arching phenomena. Because the underground structure has many unreliable factors in the design stage, the prediction of a fault zone ahead of the tunnel face by monitoring plans during tunnel construction and the rapid establishment of appropriate support system are required for more economical and safer tunnel construction. Recent study shows that longitudinal displacement changes during excavation due to the change of rock property, and if longitudinal displacement and settlement, which are measured in the field, are considered together in displacement analysis, the prediction of change in rock mass property is possible. This study provided the method for the prediction of fault zones by analyzing the changes of L/C and (Ll-Lr)/C ratio (L= longitudinal displacement at crown, C = settlement at crown, Ll = longitudinal displacement at left sidewall, Lr = longitudinal displacement at right sidewall) and the stereographic projection of displacement vectors which were obtained from the 3-D numerical analysis of hybrid method in various initial stress conditions.

  • PDF

Development of new models to predict the compressibility parameters of alluvial soils

  • Alzabeebee, Saif;Al-Taie, Abbas
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.437-448
    • /
    • 2022
  • Alluvial soil is challenging to work with due to its high compressibility. Thus, consolidation settlement of this type of soil should be accurately estimated. Accurate estimation of the consolidation settlement of alluvial soil requires accurate prediction of compressibility parameters. Geotechnical engineers usually use empirical correlations to estimate these compressibility parameters. However, no attempts have been made to develop correlations to estimate compressibility parameters of alluvial soil. Thus, this paper aims to develop new models to predict the compression and recompression indices (Cc and Cr) of alluvial soils. As part of the study, geotechnical laboratory tests have been conducted on large number of undisturbed samples of local alluvial soil. The obtained results from these tests in addition to available results from the literature from different parts in the world have been compiled to form the database of this study. This database is then employed to examine the accuracy of the available empirical correlations of the compressibility parameters and to develop the new models to estimate the compressibility parameters using the nonlinear regression analysis. The accuracy of the new models has been accessed using mean absolute error, root mean square error, mean, percentage of predictions with error range of ±20%, percentage of predictions with error range of ±30%, and coefficient of determination. It was found that the new models outperform the available correlations. Thus, these models can be used by geotechnical engineers with more confidence to predict Cc and Cr.