• Title/Summary/Keyword: prediction of Oil spill diffusion

Search Result 7, Processing Time 0.018 seconds

Real-time Oil Spill Dispersion Modelling (실시간 유출유 확산모델링)

  • 정연철
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.1
    • /
    • pp.9-18
    • /
    • 1999
  • To predict the oil spill dispersion phenomena in the ocean, the oil spill response model, which can be used for strategic purpose on the oil spill site, based on Lagrangian particle-tracking method was formulated and applied to the neighboring area with Pusan port where the oil spill incident occurred when the tanker ship No.1 Youil struck on a small rock near the Namhyungjeto on September 21, 1995. The real-time tidal currents to be required as input data of the oil spill model were obtained by the two-dimensional hydrodynamic model and the tide prediction model. Evaluation of tidal currents using observation data was successful. For wind data, other input data of oil spill model, observed data on the spot were used. To verify the oil spill model, the oil spill modelling results were compared with the field data obtained from the spill site. Compared the modelling results with the observation data, there exist some discrepancies but the general pattern of modelling results was similar to that of field observation. The modelling results on 7 days after spill occurred showed that the 40% of spilled oil is in floating, 36% in evaporated, 23% at shore, and 1% in out of boundary, respectively. According to the evaluation of weighting curves of effective components to the dispersion of oil, the winds make a 37% of contribution to the dispersion of oil, turbulent diffusion 39.5%, and tidal currents 23.5%, respectively. Provided the more accurate wind data are supported, more favorable results might be obtained.

  • PDF

Prediction Model and Numerical Simulation of the Initial Diffusion of Spilled Oil on the Sea Surface (해상누유의 초기확산 예측모델 및 수치추정)

  • Yoon, B.S.;Song, J.U.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.2
    • /
    • pp.104-110
    • /
    • 1997
  • Increase of marine transpotation in coastal area frequently yields oil spill accidents due to collision or grounding of oil tankers, which affects great deal of damages on ocean environments. Exact prediction of oil pollution area in time domain, which is called oil map, is very important for effective and efficient oil recovery and minimization of environmental damage. The prediction is carried out by considering the two distinct processes which are initial diffusion on the still water surface and advection due to tide, wind wave induced surface currents. In the present paper, only the initial diffusion is dealt with. Somewhat new simulation model and its numerical scheme are proposed to predict it. Simple diffusion experiment is also carried out to check the validity of the present method. Furthermore, some example simulations are performed for virtual oil spill accident. Quite realistic oil map including oil thickness distributions can be obtained by the present model.

  • PDF

An Effective Numerical Method for the Prediction of Oil Spreading (누유확산 및 이동의 추정을 위한 효율적인 수치기법)

  • Song, J.U.;Rho, J.H.;Yoon, B.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.113-118
    • /
    • 1997
  • A simulation model and its numerical algorithm for the prediction of time-varying oil pollution region are proposed. Not only forces inducing molecular diffusion of oil but also oil advection due to the ocean surface current are considered in the present unified model Furthermore, an automatic modulation of computational grid is introduced to achieve more practical and effective numerical scheme. Applying the present method to some assumed oil spill cases, quite realistic oil maps are thought to be obtained.

  • PDF

A Study on Realizing the GUI Based Ocean Pollutant Information Simulator I (GUI 기반 해양오염원 정보제공 SIMULAIOR 구현에 관한 연구 I)

  • Rho J. H.;Yoon S. H.;Kim M. H.;Yoon B. S.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.3
    • /
    • pp.23-27
    • /
    • 2002
  • Ocean pollution like as oil spill and red tide have occurred considerable and executing clean-up them. Rapid prediction of polluting area is necessary that efficiency clean-up. In this study, develop the program that clean-up worker could easy predict polluted area. This paper is introduced configuration and contents of ODM(oil diffusion modelling) which constructed with GUI(Graphic User Interface) system. ODM is consisted with pre, post and main process, and constructed on window process. So, clean-up worker easy operating program and confirm the result. Studying this program, the distribution of ocean pollutant and phase of ocean movement is shown without difficulty on a computer.

  • PDF

Mixing Analysis of Oil Spilled into the River by GPS-equipped Drifter Experiment and Numerical Modeling (GPS 부자 실험과 수치모델링에 의한 하천에 유입된 유류오염물질의 거동 해석)

  • Jang, Juhyoung;Jong, Jaehun;Mun, Hyunsaing;Kim, Kyunghyun;Seo, Ilwon
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.3
    • /
    • pp.243-252
    • /
    • 2016
  • In cases of water pollution accidents, accurate prediction for arrival time and concentration of contaminants in a river is essential to take proper measures and minimize their impact on downstream water intake facilities. It is critical to fully understand the behavior characteristics of contaminants on river surface, especially in case of oil spill accidents. Therefore, in this study, the effects of main parameters of advection and diffusion of contaminants were analyzed and validated by comparing the results of Lagrangian particle tracking (LPT) simulation of Environmental Fluid Dynamic Code (EFDC) model with those of Global Position System (GPS)-equipped drifter experiment. Prevention scenario modeling was accomplished by taking cases of movable weir operation into account. The simulated water level and flow velocity fluctuations agreed well with observations. There was no significant difference in the speed of surface particle movement between 5 and 10 layer modeling. Therefore, 5 layer modeling could be chosen to reduce computational time. It was found that full three dimensional modeling simulated wind effects on surface particle movements more sensitively than depth-averaged two dimensional modeling. The diffusion range of particles was linearly proportional to horizontal diffusivity by sensitivity analysis. Horizontal diffusivity estimated from the results of GPS-equipped drifter experiment was 0.096 m2/sec, which was considered to be valid for applying the LPT module in this area. Finally, the scenario analysis results showed that particle movements could be stagnant when discharge from the upstream weir was reduced, implying the possibility of securing time for mitigation actions such as oil boom installation and wiping oil contaminants. The outcomes of this study can help improve the prediction accuracy of particle tracking simulation to establish the most suitable mitigation plan considering the combination of movable weir operation.

Performance Comparison of Machine Learning Based on Neural Networks and Statistical Methods for Prediction of Drifter Movement (뜰개 이동 예측을 위한 신경망 및 통계 기반 기계학습 기법의 성능 비교)

  • Lee, Chan-Jae;Kim, Gyoung-Do;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.10
    • /
    • pp.45-52
    • /
    • 2017
  • Drifter is an equipment for observing the characteristics of seawater in the ocean, and it can be used to predict effluent oil diffusion and to observe ocean currents. In this paper, we design models or the prediction of drifter trajectory using machine learning. We propose methods for estimating the trajectory of drifter using support vector regression, radial basis function network, Gaussian process, multilayer perceptron, and recurrent neural network. When the propose mothods were compared with the existing MOHID numerical model, performance was improve on three of the four cases. In particular, LSTM, the best performed method, showed the imporvement by 47.59% Future work will improve the accuracy by weighting using bagging and boosting.