• 제목/요약/키워드: prediction method

검색결과 9,107건 처리시간 0.035초

복합지형에 대한 WAsP의 풍속 예측성 평가 (Wind Speed Prediction using WAsP for Complex Terrain)

  • 윤광용;유능수;백인수
    • 산업기술연구
    • /
    • 제28권B호
    • /
    • pp.199-207
    • /
    • 2008
  • A linear wind prediction program, WAsP, was employed to predict wind speed at two different sites located in complex terrain in South Korea. The reference data obtained at locations more than 7 kilometers away from the prediction sites were used for prediction. The predictions from the linear model were compared with the measured data at the two prediction sites. Two compensation methods such as a self-prediction error method and a delta ruggedness index (RIX) method were used to improve the wind speed prediction from WAsP and showed a good possibility. The wind speed prediction errors reached within 3.5 % with the self prediction error method, and within 10% with the delta RIX method. The self prediction error method can be used as a compensation method to reduce the wind speed prediction error in WAsP.

  • PDF

WAsP을 이용한 복잡지형의 풍속 예측 및 보정 (Wind Speed Prediction using WAsP for Complex Terrain)

  • 윤광용;백인수;유능수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.268-273
    • /
    • 2008
  • A linear wind prediction program, WAsP, was employed to predict wind speed at two different sites located in complex terrain in South Korea. The reference data obtained at locations more than 7 kilometers away from the prediction sites were used for prediction. The predictions from the linear model were compared with the measured data at the two prediction sites. Two compensation methods such as a self-prediction error method and a delta ruggedness index (RIX) method were used to improve the wind speed prediction from WAsP and showed a good possibility. The wind speed prediction errors reached within 3.5 % with the self prediction error method, and within 10% with the delta RIX method. The self prediction error method can be used as a compensation method to reduce the wind speed prediction error in WAsP.

  • PDF

A cavitation performance prediction method for pumps: Part2-sensitivity and accuracy

  • Long, Yun;Zhang, Yan;Chen, Jianping;Zhu, Rongsheng;Wang, Dezhong
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3612-3624
    • /
    • 2021
  • At present, in the case of pump fast optimization, there is a problem of rapid, accurate and effective prediction of cavitation performance. In "A Cavitation Performance Prediction Method for Pumps PART1-Proposal and Feasibility" [1], a new cavitation performance prediction method is proposed, and the feasibility of this method is demonstrated in combination with experiments of a mixed flow pump. However, whether this method is applicable to vane pumps with different specific speeds and whether the prediction results of this method are accurate is still worthy of further study. Combined with the experimental results, the research evaluates the sensitivity and accuracy at different flow rates. For a certain operating condition, the method has better sensitivity to different flow rates. This is suitable for multi-parameter multi-objective optimization of pump impeller. For the test mixed flow pump, the method is more accurate when the area ratios are 13.718% and 13.826%. The cavitation vortex flow is obtained through high-speed camera, and the correlation between cavitation flow structure and cavitation performance is established to provide more scientific support for cavitation performance prediction. The method is not only suitable for cavitation performance prediction of the mixed flow pump, but also can be expanded to cavitation performance prediction of blade type hydraulic machinery, which will solve the problem of rapid prediction of hydraulic machinery cavitation performance.

Prediction Accuracy Evaluation of Domain and Domain Combination Based Prediction Methods for Protein-Protein Interaction

  • Han, Dong-Soo;Jang, Woo-Hyuk
    • Bioinformatics and Biosystems
    • /
    • 제1권2호
    • /
    • pp.128-133
    • /
    • 2006
  • This paper compares domain combination based protein-protein interaction prediction method with domain based protein-protein interaction method. The prediction accuracy and reliability of the methods are compared using the same prediction technique and interaction data. According to the comparison, domain combination based prediction method has showed superior prediction accuracy to domain based prediction method for protein pairs with fully overlapped domains with protein pairs in learning sets. When we consider that domain combination based method has the effects of assigning a weight to each domain interaction, it implies that we can improve the prediction accuracies of currently available domain or domain combination based protein interaction prediction methods further by developing more advanced weight assignment techniques. Several significant facts revealed from the comparative studies are also described in this paper.

  • PDF

뉴로-퍼지 기법에 의한 오존농도 예측모델 (Neuro-Fuzzy Approaches to Ozone Prediction System)

  • 김태헌;김성신;김인택;이종범;김신도;김용국
    • 한국지능시스템학회논문지
    • /
    • 제10권6호
    • /
    • pp.616-628
    • /
    • 2000
  • In this paper, we present the modeling of the ozone prediction system using Neuro-Fuzzy approaches. The mechanism of ozone concentration is highly complex, nonlinear, and nonstationary, the modeling of ozone prediction system has many problems and the results of prediction is not a good performance so far. The Dynamic Polynomial Neural Network(DPNN) which employs a typical algorithm of GMDH(Group Method of Data Handling) is a useful method for data analysis, identification of nonlinear complex system, and prediction of a dynamical system. The structure of the final model is compact and the computation speed to produce an output is faster than other modeling methods. In addition to DPNN, this paper also includes a Fuzzy Logic Method for modeling of ozone prediction system. The results of each modeling method and the performance of ozone prediction are presented. The proposed method shows that the prediction to the ozone concentration based upon Neuro-Fuzzy approaches gives us a good performance for ozone prediction in high and low ozone concentration with the ability of superior data approximation and self organization.

  • PDF

도착관리시스템 궤적 예측 모듈의 성능 개선을 위한 궤적 예측 정확도 분석 방법 연구 (Study on Trajectory Prediction Accuracy Analysis Method for Performance Improvement of a Trajectory Prediction Module of Arrival Manager)

  • 오은미;김현경;은연주;전대근
    • 한국항공운항학회지
    • /
    • 제23권3호
    • /
    • pp.28-34
    • /
    • 2015
  • An analysis method of trajectory prediction has been suggested and the developed trajectory prediction module, which is an important functional component of the Arrival Manager (AMAN) of Jeju airport, has been tested by applying the suggested method. The objective of this method is to improve prediction performance of the trajectory prediction module. The trajectory prediction module predicts the trajectories based on the real-time track data and flight plans. Therefore, the suggested analysis method includes the simulation framework which is based on real-time playback, recording, and graphic display systems for testing. Besides, the definition of time error, which is a important index for the time based scheduling system, such as AMAN, is included in the suggested analysis method. An example of arrival time prediction accuracy improvement through the suggested analysis method has also been presented.

차량 궤적 예측기법을 이용한 차간 거리 제어 (Vehicle - to - Vehicle Distance Control using a Vehicle Trajectory Prediction Method)

  • 조상민;이경수
    • 한국자동차공학회논문집
    • /
    • 제10권3호
    • /
    • pp.123-129
    • /
    • 2002
  • This paper proposes a vehicle trajectory prediction method far application to vehicle-to-vehicle distance control. This method is based on 2-dimensional kinematics and a Kalman filter has been used to estimate acceleration of the object vehicle. The simulation results using the proposed control method show that the relative distance characteristics can be improved via the trajectory prediction method compared to the customary intelligent cruise control algorithm.

소음지도 제작을 위한 도로교통 소음예측식 비교연구 -국외 예측식을 중심으로- (A comparative Study of Noise Prediction Method for Road Traffic Noise Map -Focused on Foreign Traffic Noise Prediction Method-)

  • 장환;방민;김흥식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.709-714
    • /
    • 2008
  • The various computer programs are used in computer simulation of the traffic noise prediction. But the difference or problem of calculation method used for road traffic noise prediction is not exactly investigated. In this paper, Road traffic noise is predicted on the specific regions by using four prediction methods such as XPS31-133 model(France), RLS-90 model(Germany), ASJ RTN model(Japan) and FHWA model(U.S.A.), which are operated by a program named SoundPLAN, a program to predict road traffic noise. Those prediction values are compared with a measurement value. The results show that four prediction values for taraffic noise are a little different, because of various input factors according to the prediction methods.

  • PDF

인공신경망 및 통계적 방법을 이용한 오존 형성의 예측 (Prediction of Ozone Formation Based on Neural Network and Stochastic Method)

  • 오세천;여영구
    • 청정기술
    • /
    • 제7권2호
    • /
    • pp.119-126
    • /
    • 2001
  • 인공신경 회로망과 통계적 방법을 이용하여 오존 형성의 예측에 관한 연구를 수행하였다. 파라미터 평가방법으로는 실시간 파라미터를 평가하기 위하여 ELS 및 RML 방법이 사용되었으며 오존 형성의 모델로는 ARMAX 모델을 사용하였다. 또한 3층 구조를 갖는 인공신경 회로망 방법을 이용하여 오존 형성의 예측 시험을 수행하였으며 본 연구에 사용된 통계적 방법의 성능을 평가하기 위하여 오존 형성의 예측결과를 실제 자료와 비교 분석을 하였다. 실제 자료와의 비교를 통하여 파라미터 평가 방법 및 인공신경 회로망 방법에 근거한 예측방법이 제한된 예측 구간 내에서 만족할 만한 성능을 보임을 확인할 수 있었다.

  • PDF

Dam Sensor Outlier Detection using Mixed Prediction Model and Supervised Learning

  • Park, Chang-Mok
    • International journal of advanced smart convergence
    • /
    • 제7권1호
    • /
    • pp.24-32
    • /
    • 2018
  • An outlier detection method using mixed prediction model has been described in this paper. The mixed prediction model consists of time-series model and regression model. The parameter estimation of the prediction model was performed using supervised learning and a genetic algorithm is adopted for a learning method. The experiments were performed in artificial and real data set. The prediction performance is compared with the existing prediction methods using artificial data. Outlier detection is conducted using the real sensor measurements in a dam. The validity of the proposed method was shown in the experiments.