• Title/Summary/Keyword: prediction intelligence

Search Result 852, Processing Time 0.025 seconds

Precision Agriculture using Internet of Thing with Artificial Intelligence: A Systematic Literature Review

  • Noureen Fatima;Kainat Fareed Memon;Zahid Hussain Khand;Sana Gul;Manisha Kumari;Ghulam Mujtaba Sheikh
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.155-164
    • /
    • 2023
  • Machine learning with its high precision algorithms, Precision agriculture (PA) is a new emerging concept nowadays. Many researchers have worked on the quality and quantity of PA by using sensors, networking, machine learning (ML) techniques, and big data. However, there has been no attempt to work on trends of artificial intelligence (AI) techniques, dataset and crop type on precision agriculture using internet of things (IoT). This research aims to systematically analyze the domains of AI techniques and datasets that have been used in IoT based prediction in the area of PA. A systematic literature review is performed on AI based techniques and datasets for crop management, weather, irrigation, plant, soil and pest prediction. We took the papers on precision agriculture published in the last six years (2013-2019). We considered 42 primary studies related to the research objectives. After critical analysis of the studies, we found that crop management; soil and temperature areas of PA have been commonly used with the help of IoT devices and AI techniques. Moreover, different artificial intelligence techniques like ANN, CNN, SVM, Decision Tree, RF, etc. have been utilized in different fields of Precision agriculture. Image processing with supervised and unsupervised learning practice for prediction and monitoring the PA are also used. In addition, most of the studies are forfaiting sensory dataset to measure different properties of soil, weather, irrigation and crop. To this end, at the end, we provide future directions for researchers and guidelines for practitioners based on the findings of this review.

Artificial intelligence-based blood pressure prediction using photoplethysmography signals

  • Yonghee Lee;YongWan Ju;Jundong Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.155-160
    • /
    • 2023
  • This paper presents a method for predicting blood pressure using the photoplethysmography signals. First, after measuring the optical blood flow signal, artifacts are removed through a preprocessing process, and a signal for learning is obtained. In addition, weight and height, which affect blood pressure, are measured as additional information. Next, a system is built to estimate systolic and diastolic blood pressure by learning the photoplethysmography signals, height, and weight as input variables through an artificial intelligence algorithm. The constructed system predicts the systolic and diastolic blood pressures using the inputs. The proposed method can continuously predict blood pressure in real time by receiving photoplethysmography signals that reflect the state of the heart and blood vessels, and the height and weight of the subject in an unconstrained method. In order to confirm the usefulness of the artificial intelligence-based blood pressure prediction system presented in this study, the usefulness of the results is verified by comparing the measured blood pressure with the predicted blood pressure.

Development of Artificial Intelligence Education Contents based on TensorFlow for Reinforcement of SW Convergence Gifted Teacher Competency (SW융합영재 담당교원 역량 강화를 위한 텐서플로우 기반 인공지능 교육 콘텐츠 개발)

  • Jang, Eunsill;Kim, Jaehyoun
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.167-177
    • /
    • 2019
  • The enhancement of national competitiveness in future society is the discovery and training of excellent SW convergence gifted. In order to cultivate these SW convergence gifted, reinforcing competence of teachers in charge should be made first. Therefore, in this paper, artificial intelligence education contents, one of the core technologies of the 4th Industrial Revolution era, were developed to reinforcing competence of SW convergence gifted teachers. After setting the direction of artificial intelligence education content, we constructed educational content suitable for secondary SW convergence gifted education, and designed and developed it in detail. The composition of artificial intelligence education content consists of machine learning and tensor flow understanding, linear regression machine learning implementation for numerical prediction, and multiple linear regression-based price prediction machine learning implementations. The developed educational contents were verified by experts with qualitative aspects. In the future, we expect that the educational content of artificial intelligence proposed in this paper will be useful for strengthening the ability of SW convergence gifted teachers.

Development of Dynamic Frequency Monitoring Software for Wide-Area Protection Relaying Intelligence (광역 보호계전 지능화를 위한 동적 주파수 모니터링 S/W 개발)

  • Kim, Yoon-Sang;Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.174-179
    • /
    • 2012
  • The social and economic level of damages might be highly increased in the case of wide-area black-outages, because of heavy dependence of electricity. Therefore, the development of a wide-area protection relay intelligence techniques is required to prevent massive power outages and minimize the impact strength at failure. The frequency monitoring and prediction for wide-area protection relaying intelligence has been considered as an important technology. In this paper, a network-based frequency monitoring system developed for wide-area protection relay intelligence is presented. In addition, conventional techniques for frequency estimation are compared, and a method for advanced frequency estimation and measurement to improve the precision is proposed. Finally, an integrated monitoring system called K-FNET(Korea-Frequency Monitoring Network) is implemented based on the GPS and various energy monitoring cases are studied.

Standardization Trends on Artificial Intelligence in Medicine (의료 인공지능 표준화 동향)

  • Jeon, J.H.;Lee, K.C.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.5
    • /
    • pp.113-126
    • /
    • 2019
  • Based on the accumulation of medical big data, advances in medical artificial intelligence technology facilitate the timely treatment of disease through the reading the medical images and the increase of prediction speed and accuracy of diagnoses. In addition, these advances are expected to spark significant innovations in reducing medical costs and improving care quality. There are already approximately 40 FDA approved products in the US, and more than 10 products with K-FDA approval in Korea. Medical applications and services based on artificial intelligence are expected to spread rapidly in the future. Furthermore, the evolution of medical artificial intelligence technology is expanding the boundaries or limits of various related issues such as reference standards and specifications, ethical and clinical validation issues, and the harmonization of international regulatory systems.

Molecular Property Prediction with Deep-learning and Pretraining Strategy (사전학습 전략과 딥러닝을 활용한 분자의 특성 예측)

  • Lee, Seungbeom;Kim, Jiye;Kim, Dongwoo;Park, Jaesik;Ahn, Sungsoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.63-66
    • /
    • 2022
  • 본 논문에서는 분자의 특성을 정확하게 예측하기 위해 효과적인 사전학습(pretraining) 전략과 트랜스포머(Transformer) 모델을 활용한 방법을 제시한다. 딥러닝을 활용한 분자의 성능을 예측하는 연구는 그동안 레이블이 부족한 분자데이터의 특성에 의해 학습 때 사용된 데이터이외의 분자데이터에 대해 일반화 능력이 떨어지는 어려움을 겪었다. 이 논문에서 제시한 모델은 사전학습(pretraining)을 수행할 때 자기지도학습(self-supervised training)을 사용하여 부족한 레이블에 의한 문제점을 피할 수 있다. 대규모 분자 데이터셋으로부터 학습된 이 모델은 4가지 다운스트림 데이터셋에 대해 모두 우수한 성능을 보여주어 일반화 성능이 뛰어나며 효과적인 분자표현을 얻을 수 있음을 보인다.

  • PDF

Design and Implementation of a Mobile-based Sarcopenia Prediction and Monitoring System (모바일 기반의 '근감소증' 예측 및 모니터링 시스템 설계 및 구현)

  • Kang, Hyeonmin;Park, Chaieun;Ju, Minina;Seo, Seokkyo;Jeon, Justin Y.;Kim, Jinwoo
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.3
    • /
    • pp.510-518
    • /
    • 2022
  • This paper confirmed the technical reliability of mobile-based sarcopenia prediction and monitoring system. In implementing the developed system, we designed using only sensors built into a smartphone without a separate external device. The prediction system predicts the possibility of sarcopenia without visiting a hospital by performing the SARC-F survey, the 5-time chair stand test, and the rapid tapping test. The Monitoring system tracks and analyzes the average walking speed in daily life to quickly detect the risk of sarcopenia. Through this, it is possible to rapid detection of undiagnosed risk of undiagnosed sarcopenia and initiate appropriate medical treatment. Through prediction and monitoring system, the user may predict and manage sarcopenia, and the developed system can have a positive effect on reducing medical demand and reducing medical costs. In addition, collected data is useful for the patient-doctor communication. Furthermore, the collected data can be used for learning data of artificial intelligence, contributing to medical artificial intelligence and e-health industry.

A Study on a car Insurance purchase Prediction Using Two-Class Logistic Regression and Two-Class Boosted Decision Tree

  • AN, Su Hyun;YEO, Seong Hee;KANG, Minsoo
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.1
    • /
    • pp.9-14
    • /
    • 2021
  • This paper predicted a model that indicates whether to buy a car based on primary health insurance customer data. Currently, automobiles are being used to land transportation and living, and the scope of use and equipment is expanding. This rapid increase in automobiles has caused automobile insurance to emerge as an essential business target for insurance companies. Therefore, if the car insurance sales are predicted and sold using the information of existing health insurance customers, it can generate continuous profits in the insurance company's operating performance. Therefore, this paper aims to analyze existing customer characteristics and implement a predictive model to activate advertisements for customers interested in such auto insurance. The goal of this study is to maximize the profits of insurance companies by devising communication strategies that can optimize business models and profits for customers. This study was conducted through the Microsoft Azure program, and an automobile insurance purchase prediction model was implemented using Health Insurance Cross-sell Prediction data. The program algorithm uses Two-Class Logistic Regression and Two-Class Boosted Decision Tree at the same time to compare two models and predict and compare the results. According to the results of this study, when the Threshold is 0.3, the AUC is 0.837, and the accuracy is 0.833, which has high accuracy. Therefore, the result was that customers with health insurance could induce a positive reaction to auto insurance purchases.

Use of automated artificial intelligence to predict the need for orthodontic extractions

  • Real, Alberto Del;Real, Octavio Del;Sardina, Sebastian;Oyonarte, Rodrigo
    • The korean journal of orthodontics
    • /
    • v.52 no.2
    • /
    • pp.102-111
    • /
    • 2022
  • Objective: To develop and explore the usefulness of an artificial intelligence system for the prediction of the need for dental extractions during orthodontic treatments based on gender, model variables, and cephalometric records. Methods: The gender, model variables, and radiographic records of 214 patients were obtained from an anonymized data bank containing 314 cases treated by two experienced orthodontists. The data were processed using an automated machine learning software (Auto-WEKA) and used to predict the need for extractions. Results: By generating and comparing several prediction models, an accuracy of 93.9% was achieved for determining whether extraction is required or not based on the model and radiographic data. When only model variables were used, an accuracy of 87.4% was attained, whereas a 72.7% accuracy was achieved if only cephalometric information was used. Conclusions: The use of an automated machine learning system allows the generation of orthodontic extraction prediction models. The accuracy of the optimal extraction prediction models increases with the combination of model and cephalometric data for the analytical process.