• Title/Summary/Keyword: predicted environmental concentrations

Search Result 148, Processing Time 0.025 seconds

Anti-Proliferation Effects of Decursin from Angelica gigas Nakai in the MCF-7 Cells Treated with Environmental Hormones (환경호르몬에 의해 유도된 인체 유방암세포의 증식에 대한 당귀로부터 분리한 Decursin 억제효과)

  • Park, Kyung-Wuk;Choi, Sa-Ra;Yang, Hee-Sun;Cho, Hyun-Wook;Kang, Kap-Suk;Seo, Kwon-Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.7
    • /
    • pp.825-831
    • /
    • 2007
  • Anti-proliferation effects of decursin from Angelica gigas Nakai were investigated in the MCF-7 cells treated with environmental hormones. The proliferation was decreased in a dose-dependent manner at the concentration over 20 ${\mu}g/mL$ in the MCF-7 cells treated with decursin of various concentrations. The environmental hormones such as $17{\beta}$-estradiol and bisphenol increased the growth of MCF-7 cells in the charcoal-treated FBS (cFBS) medium and the proliferation was the highest at 0.1 ${\mu}M$ among the tested hormone concentration. Decursin was predicted to inhibit the proliferation in a dose-dependent fashion at tested concentrations (1, 3, 10 or 30 ${\mu}g/mL$) in the MCF-7 cells added environmental hormones; however, the survival rate of the cells was lower than that of control cells that were not treated with decursin at 30 ${\mu}g/mL$ concentration. The chromatin condensation and apoptotic body were examined in the decursin treated cells cultured with the cFBS medium added environmental hormones. These results suggest that decursin decreased the proliferation through apoptosis in the MCF-7 cells added environmental hormones.

Investigation of Chemical Characteristics of $PM_{2.5}$ during Winter in Gwangju (겨울철 광주지역 $PM_{2.5}$의 화학적 특성 조사)

  • Ko, Jae-Min;Bae, Min-Suk;Park, Seung Shik
    • Particle and aerosol research
    • /
    • v.9 no.2
    • /
    • pp.89-102
    • /
    • 2013
  • 24-hr $PM_{2.5}$ samples were collected from January 19 through February 27, 2009 at an urban site of Gwangju and analyzed to determine the concentrations of organic and elemental carbon(OC and EC), water-soluble OC(WSOC), eight ionic species($Na^+$, $NH^{4+}$, $K^+$, $Ca^{2+}$, $Mg^{2+}$, $Cl^-$, ${NO_3}^-$ and ${SO_4}^{2-}$), and 22 elemental species. Haze phenomena was observed during approximately 29%(10 times) of the whole sampling period(35 days), resulting in highly elevated concentrations of $PM_{2.5}$ and its chemical components. An Asian dust event was also observed, during which $PM_{2.5}$ concentration was 64.5 ${\mu}g/m^2$. Crustal materials during Asian dust event contributed 26.6% to the $PM_{2.5}$, while lowest contribution(5.1%) was from the haze events. OC/EC and WSOC/OC ratios were found to be higher during haze days than during other sampling days, reflecting an enhanced secondary organic aerosol production under the haze conditions. For an Asian dust event, enhanced concentrations of OC and secondary inorganic components were also found, suggesting the further atmospheric processing of precursor gases during transport of air mass to the sampling site. Correlations among WSOC, EC, ${NO_3}^-$, ${SO_4}^{2-}$, and primary and secondary OC fractions, which were predicted from EC tracer method, suggests that the observed WSOC could be formed from similar formation processes as those of secondary organic aerosol, ${NO_3}^-$ and ${SO_4}^{2-}$. Results from principal component analysis indicate also that the observed WSOC was strongly associated with formation routes of the secondary organic and inorganic aerosols.

Study on Retardation Effect of a Heavy Metal in Sandy Soils

  • Kim, Dong-Ju;Sung, Baek-Doo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.06a
    • /
    • pp.43-49
    • /
    • 1998
  • Retardation effect of heavy metals in soils caused by adsorption onto the surfaces of solids particles is well known phenomena. The adsorption of metal ions has been recognized more strong in clay mineral and organic matter contents rather than sands and gravels. In this study, we investigated the retardation effect in two sandy soils by conducting batch and column tests. The column tests were conducted to obtain the relationship between concentration and time known as breakthrough curve (BTC). We applied pulse type injection of ZnCl$_2$solution on the inlet boundary and monitored the effluent concentration at the exit boundary under steady state condition using EC-meter and ICP-AES. Batch test consisted of an equilibrium procedure for fine fractions collected from two sandy soils for various initial ZnCl$_2$concentrations, and analysis of Zn ions in equilibrated solution using ICP-AES. The results of column test showed that i) the peak concentration of Zn analyzed by ICP was far less than that detected by EC-meter for both soils and ii) travel times for peak concentration were more less identical for two different monitoring techniques. The first result can be explained by ion exchange between Zn and other cations initially present in the soil particles since ICP analysis showed a significant amount of Ca, Mg ions in the effluent. From the second result, we found that retardation effect was not present in these soils due to strong cation exchange capacity of Zn ion over other cations since we did not apply a solution containing more adsorptive cations such as Al. The result of batch test also showed high distribution coefficients (K$_{d}$) for two soils supporting the dominant ion exchange phenomena. Based on the retardation factor obtained from the Kd, we predicted the BTC using CDE model and compared with the BTC of Zn concentration obtained from ICP The predicted BTC, however, disagreed with the monitored in terms of travel time and magnitude of the peak concentrations. The only way to describe the prominent decrease of Zn ion was to introduce decay or sink coefficient in the CDE model to account for irreversible decrease of Zn ions in liquid phase.e.

  • PDF

CFD Simulations of the Trees' Effects on the Reduction of Fine Particles (PM2.5): Targeted at the Gammandong Area in Busan (수목의 초미세먼지(PM2.5) 저감 효과에 대한 CFD 수치 모의: 부산 감만동 지역을 대상으로)

  • Han, Sangcheol;Park, Soo-Jin;Choi, Wonsik;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.851-861
    • /
    • 2022
  • In this study, we analyzed the effects of trees planted in urban areas on PM2.5 reduction using a computational fluid dynamics (CFD) model. For realistic numerical simulations, the meteorological components(e.g., wind velocity components and air temperatures) predicted by the local data assimilation and prediction system (LDAPS), an operational model of the Korea Meteorological Administration, were used as the initial and boundary conditions of the CFD model. The CFD model was validated against, the PM2.5 concentrations measured by the sensor networks. To investigate the effects of trees on the PM2.5 reduction, we conducted the numerical simulations for three configurations of the buildings and trees: i) no tree (NT), ii) trees with only drag effect (TD), and iii) trees with the drag and dry-deposition effects (DD). The results showed that the trees in the target area significantly reduced the PM2.5 concentrations via the dry-deposition process. The PM2.5 concentration averaged over the domain in DD was reduced by 5.7 ㎍ m-3 compared to that in TD.

Evaluation of the Effectiveness of Emission Control Measures to Improve PM2.5 Concentration in South Korea (미세먼지 농도 개선을 위한 배출량 저감대책 효과 분석)

  • Kim, Eunhye;Bae, Changhan;Yoo, Chul;Kim, Byeong-Uk;Kim, Hyun Cheol;Kim, Soontae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.469-485
    • /
    • 2018
  • On September 26, 2017, South Korean government has established the Particulate Matter Comprehensive Plan to improve Korean air quality by 2022, which aims to reduce annual mean surface $PM_{2.5}$ concentration to $18{\mu}g/m^3$. This study demonstrates quantitative assessment of predicted $PM_{2.5}$ concentrations over 17 South Korean regions with the enforcement of the comprehensive plan. We utilize the Community Multi-scale Air Quality (CMAQ) modeling system with CAPSS 2013 and CREATE 2015 emissions inventories. Simulations are conducted for 2015 with the base emissions and the planned emissions, and impacts from model biases are minimized using the RRF (Relative Response Factor). With effective emission reduction scenario suggested by the comprehensive plan, the model demonstrates that the surface $PM_{2.5}$ concentration may decrease by $6{\mu}g/m^3$ ($23{\mu}g/m^3{\rightarrow}17{\mu}g/m^3$) and $7{\mu}g/m^3$ ($25{\mu}g/m^3{\rightarrow}18{\mu}g/m^3$) for Seoul and South Korea, respectively. The number of high $PM_{2.5}$ days(daily mean>$25{\mu}g/m^3$) also decreases from 21 days to 4 days.

Effect of Surfactant-Coated Charcoal Amendment on the Composting Process and Nutrient Retention

  • Pinwisat, Phetrada;Phoolphundh, Sivawan;Buddhawong, Sasidhorn;Vinitnantharat, Soydoa
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.37-40
    • /
    • 2014
  • This research investigates the quality changes during composting of bagasse and pig manure amended with 30% of surfactant-coated charcoal (SC). Two treatments, 30% uncoated charcoal (UC) amendment and no charcoal (NC) amendment, were done as control. Charcoal was coated with 0.37 mM tetradecyltrimethylammonium bromide (TDMA), a cationic surfactant, at the dosage of 10 g/L. At the end of the composting period, the carbon to nitrogen (C/N) ratio of SC amendment was 9.7; whereas, the C/N ratios of UC and NC amendment were 12.6 and 21.4, respectively. Plant nutrients contents of the compost produced from SC amendment were 20.7 mg $NH_4{^+}-N/g$, 42.8 mg $NO_3{^-}-N/g$, and 41.7 mg P/g. High nitrate and phosphate concentrations in SC amendment were due to the adsorption of these anions on the positive charge of TDMA. Desorption of plant nutrients retained in the compost pellets was also investigated. It was predicted that nitrate was fully desorbed from a pellet at 23 days for SC amendment, which was later than UC (14 days) and NC (10 days) amendment. A slow release of nitrate from the compost pellet will reduce the nitrate leaching into the environment. Thus, the adding of SC in the compost pile is one of the alternative methods to improve the quality of compost and plant nutrient retention.

Decomposition of Antibiotics (Cefaclor) by Ionizing Radiation: Optimization and Modeling Using a Design of Experiment (DOE) Based on Statistical Analysis

  • Yu, Seung-Ho;Chang, Soon-Woong;Lee, Si-Jin;Cho, Il-Hyoung
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.81-87
    • /
    • 2009
  • The decomposition of antibiotics (cefaclor) by gamma irradiation in aqueous solutions was experimentally evaluated. To obtain a mutual interaction between two factors (antibiotics concentrations and radiation doses) and to optimize these factors during the process, experimental design and statistical analysis were employed. The decomposition capability of the gamma radiation was also mathematically described as a function of cefaclor concentration and gamma-ray dose using the statistical analysis. The results showed that the cefaclor concentration ($X_1$) in the response $Y_1$ (Reduction of cefaclor concentration) and gamma-ray dose ($X_2$) in the response $Y_2$ (Removal efficiency (%) of cefaclor concentration) exhibited a significantly positive effect, whereas gamma-ray dose ($X_2$) in the response $Y_1$ showed a significantly negative effect. The estimated ridge of maximum responses and optimal conditions for $Y_1$:($X_1$,$X_2$)=(25 mg/L, 350 Gy) and $Y_2$:($X_1$,$X_2$)=(21 mg/L, 565 Gy) using canonical analysis were 4.37 mg/L of reduction of cefaclor concentration and 98.35% of removal efficiency of cefaclor concentration, respectively. The measurement values agreed well with the predicted ones, thereby confirming the suitability of the model for $Y_1$ and $Y_2$ and the success of the experimental design in optimizing the conditions of the gamma irradiation process.

Congener Specific Characteristics of PCBs and PCDD/Fs and Risk Assesment for Human Milk of Korea (국내 모유에서의 PCBs 및 PCDD/Fs 분포 특성과 위해성 평가)

  • Yang, Yoon-Hee;Chang, Yoon-Seok;Kim, Byung-Hoon;Yang, Ji-Yoen;Shin, Dong-Chun
    • Analytical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.520-533
    • /
    • 2000
  • We analyzed the PCDD/Fs and PCBs in human milk samples from a city and an industrial region by HRGC/HRMS. The average concentrations of PCDD/Fs and PCBs in human milk were 15.13 TEQ pg/g fat and 5.64 TEQ pg/g fat respectively. We discovered two kinds of homologue distributions. We compared congeners of each distributions with those of the commercial PCBs products. The daily intake of infant was predicted to be 60 TEQpg/kg/day according to the mean concentration of PCDD/Fs based on primipara. This value is much higher than the estimated range for background exposure to adult in the USA (1-3 TEQ pg/g fat).

  • PDF

CALPUFF Modeling of Odor/suspended Particulate in the Vicinity of Poultry Farms (축사 주변의 악취 및 부유분진의 CALPUFF 모델링: 계사 중심으로)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.90-104
    • /
    • 2019
  • In this study, CALPUFF modeling was performed, using a real surface and upper air meterological data to predict trustworthy modeling-results. Pollutant-releases from windscreen chambers of enclosed poultry farms, P1 and P2, and from a open poultry farm, P3, and their diffusing behavior were modeled by CALPUFF modeling with volume sources as well as by finally-adjusted CALPUFF modeling where a linear velocity of upward-exit gas averaged with the weight of each directional-emitting area was applied as a model-linear velocity ($u^M_y$) at a stack, with point sources. In addition, based upon the scenario of poultry farm-releasing odor and particulate matter (PM) removal efficiencies of 0, 20, 50 and 80% or their corresponding emission rates of 100, 80, 50 and 20%, respectively, CALPUFF modeling was performed and concentrations of odor and PM were predicted at the region as a discrete receptor where civil complaints had been frequently filed. The predicted concentrations of ammonia, hydrogen sulfide, $PM_{2.5}$ and $PM_{10}$ were compared with those required to meet according to the offensive odor control law or the atmospheric environmental law. Subsequently their required removal efficiencies at poultry farms of P1, P2 and P3 were estimated. As a result, a priori assumption that pollutant concentrations at their discrete receptors are reduced by the same fraction as pollutant concentrations at P1, P2 and P3 as volume source or point source, were controlled and reduced, was proven applicable in this study. In case of volume source-adopted CALPUFF modeling, its required removal efficiencies of P1 compared with those of point source-adopted CALPUFF modeling, were predicted similar each other. However, In case of volume source-adopted CALPUFF modeling, its required removal efficiencies of both ammonia and $PM_{10}$ at not only P2 but also P3 were predicted higher than those of point source-adopted CALPUFF modeling. Nonetheless, the volume source-adopted CALPUFF modeling was preferred as a safe approach to resolve civil complaints. Accordingly, the required degrees of pollution prevention against ammonia, hydrogen sulfide, $PM_{2.5}$ and $PM_{10}$ at P1 and P2, were estimated in a proper manner.

Characterization of the Behavior of Naturally Occurring Radioactive Elements in the Groundwater within the Chiaksan Gneiss Complex : Focusing on the Mineralogical Interpretation of Artificial Weathering Experiments (치악산 편마암 지질의 지하수 내 자연 방사성 원소의 거동 특성 연구: 인공풍화 실험을 통한 광물학적 해석)

  • Woo-Chun Lee;Sang-Woo Lee;Hyeong-Gyu Kim;Do-Hwan Jeong;Moon-Su Kim;Hyun-Koo Kim;Soon-Oh Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.289-302
    • /
    • 2023
  • The study area was Gangnim-myeon, Hoengseong-gun, Gangwon-do, composed of the Chiaksan gneiss complex, and it was revealed that the concentrations of uranium (U) and thorium (Th) within the groundwater of the study area exceeded their water quality standards. Hence, artificial weathering experiments were conducted to elucidate mineralogically the mechanisms of their leaching using drilling cores obtained from the corresponding groundwater aquifers. First of all, the mineralogical compositions of core samples were observed, and the results indicated that the content of clinochlore, a member of the chlorite group of minerals that can form through low- and intermediate-temperature metamorphisms, was relatively higher. In addition, the Th concentration was measured ten times higher than that of U. The results of artificial weathering experiments suggested that the Th concentrations gradually increased through the dissolution of radioactive-element-bearing minerals up to the first day, and then they tended to decrease. It could be attributed to the fact that Th was leached with the dissolution of thorite, which might be a secondary mineral, and then dissolved Th was re-precipitated as the various forms of salt, such as sulfate. Even though the U content was lower than that of Th in the core samples, the U concentration was one hundred times higher than that of Th after the weathering experiments. It is likely caused by the gradual dissolution and desorption of U included in intensively weathered thorite or adsorbed as a form of UO22+ on the mineral surface. In addition, the leaching tendency of U and Th was positively correlated with the bicarbonate concentration. However, the concentrations between U and Th in groundwater exhibited a relatively lower correlation, which might result from the fact that they occurred from different sources, as aforementioned. Among various kinetic models, the parabolic diffusion and pseudo-second-order kinetic models were confirmed to best fit the dissolution kinetics of both elements. The period that would be taken for the U concentration to exceed its drinking-water standard was inferred using the regressed parameters of the best-fitted models, and the duration of 29.4 years was predicted in the neutral-pH aquifers with relatively higher concentrations of HCO3, indicating that U could be relatively quickly leached out into groundwater.