• Title/Summary/Keyword: predicted environmental concentrations

Search Result 148, Processing Time 0.024 seconds

Comparison of Measured and Predicted $^3H$ Concentrations in Environmental Media around the Wolsung Site for the Validation of INDAC Code (주면피폭선량 평가코드(INDAC)의 검증을 위한 월성원전 주면 삼중수소 농도 실측치와 예측치의 비교 평가)

  • Jang, Si-Young;Kim, Chang-Kyu;Rho, Byung-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.2
    • /
    • pp.75-80
    • /
    • 2000
  • The predicted results of INDAC code were compared with measured $^3H$ concentrations in air and pine-needle around the Wolsung site. The optimal sets of input data to INDAC were in addition selected by comparing the measured values with the predicted values of INDAC based on various conditions such as the release modes of effluents into the environment, the classification of wind classes, and the consideration of terrain. The predicted $^3H$ concentrations in air and pine-needle were shown to have good agreement with measured values, although there are some limitations such as uncertainties in measured values, complex topology around the site, and the land-sea breeze effects. The assumption on the $^3H$ behavior in vegetables or plants that the ratio of $^3H$ concentration in plant water to $^3H$ concentration in atmospheric water is 1/2 was shown to be conservative in terms of the audit calculation performed by the regulator. It was also found that data sets based on mixed mode and no terrain data were not appropriate for the audit calculation ensuring the compliance with regulations. Thus, if the mixed mode is considered as the release mode of effluents into the environment, meteorological data measured at 58 m height and terrain data should be used to evaluate the atmospheric dispersion factor.

  • PDF

Mathematical and experimental study of hydrogen sulfide concentrations in the Kahrizak landfill, Tehran, Iran

  • Asadollahfardi, Gholamreza;Mazinani, Safora;Asadi, Mohsen;Mirmohammadi, Mohsen
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.572-581
    • /
    • 2019
  • The emission of hydrogen sulfide (H2S) from the Kahrizak landfill was studied. Firstly, the field measurements were conducted in the summer and winter seasons; and the samples were analyzed using Jacob method. We predicted the H2S concentrations in the downwind using AERMOD and ISCST3. According to the AERMOD, the maximum concentration of H2S in the summer and winter were 117 ㎍/㎥ and 205 ㎍/㎥ respectively. The downwind concentrations reached zero at the distance of 35 km from the leachate treatment plant. The Geometric mean bias, Geometric variance, Fractional bias, Fraction of predictions within a factor of two of the observations and Normalized mean square error for the AERMOD were 0.58, 1.35, -0.12, 1.91 and 0.042, respectively in the summer and 1.39, 1.35, -0.05, 1.46 and 0.027 in the winter; and for the ISCST3, were 0.85, 1.03, 0.02, 1.45 and 0.04 in the summer and 1.18, 1.03, 0.15, 1.16 and 0.04 in the winter. The results of the AERMOD were compared with the ISCST3 and indicated that the AERMOD performance was more suitable than the ISCST3.

Ecological Risk Assessment for Cadmium in Environmental Media (환경매체별 카드뮴의 생태위해성평가)

  • Lee, Byeongwoo;Lee, Byoungcheun;Yoon, Hyojung;Park, Kyunghwa;Kim, Pilje
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.6
    • /
    • pp.548-555
    • /
    • 2018
  • Objectives: We conducted ecological risk assessment for cadmium, a heavy metal and carcinogen, to identify safety standards by environmental media and to determine its impact on ecosystems by estimating and evaluating exposure levels. Methods: Species sensitivity distributions (SSDs) were generated using ECOTOX DB. A hazardous concentration of 5% (HC5) protective of most species (95%) in the environment was estimated. Using this estimate, predicted no effect concentrations (PNECs) were calculated for aquatic organisms. Based on the calculated PNECs for aquatic organisms, PNEC values for soil and sediment were calculated using the partition coefficient. Predicted exposure concentrations (PECs) were also calculated from environmental monitoring data with hazard quotients (HQs) calculated using PNECs for environmental media. Results: Chronic toxicity data were categorized into four groups and 11 species. In species sensitivity distribution (SSD) analysis, HC5 was $0.340{\mu}g/L$. Based on this value, the PNEC value for aquatic organisms was calculated as $0.113{\mu}g/L$. PNEC values for soil and sediments using a partition coefficient were calculated as 15.02 mg/kg and 90.61 mg/kg, respectively. In an analysis of environmental monitoring data, PEC values were calculated as $0.017{\mu}g/L$ for water, 1.01 mg/kg for soil, and 0.521 mg/kg for sediment. Conclusions: HQs were 0.150, 0.067 and 0.006 for water, soil and sediment, respectively. HQs of secondary toxicity were 0.365 for birds and 0.024 for mammals. In principle, it is judged that an HQ above 1 indicates a high level of risk concern while an HQ less than 1 indicates an extremely low level of risk concern. Therefore, with HQs of cadmium in the environment being <1, its risk levels can be considered low for each media.

Studies on the Transportation and Wet Deposition of Air Pollutant($SO_2$) by Modeling and Precipitation Analysis in Wonju City (강우분석과 모델링에 의한 원주시 대기오염물질($SO_2$) 이동과 침적에 관한 연구)

  • Kwon, Young Sik;Song, Dong Woong;Kang, Kyung Ho
    • Analytical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.98-106
    • /
    • 1996
  • The concentration of sulfur dioxide in Wonju City was predicted using TCM (Texas Climatological Model). We have studied the transportation and wet deposition of $SO_2$ using the TCM and the analysis of rainfalls. The results are as follows : At the Hak-Sung Dong site in Wonju city, the correlation coefficient between the measured and calculated concentrations were 0.904. Sulfur dioxide was washed out by wet deposition. The wet deposition ratio to total amount of emitted sulfur dioxide was higher in summer than in autumn and winter seasons due to heavy rainfall in summer. The correlation coefficient between the precipitation and wet deposition of sulfur dioxide was 0.68. The months with greater rainfall showed that the measured concentrations of sulfur dioxide were much lower than the predicted ones. Although the amount of precipitation in April was smaller than in summer, the wet deposition ratio in April was much higher than any other months, due to the sulfur dioxide that was adsorbed on particulate matter and moisture was transported during the period of yellow sand phenomena from China.

  • PDF

The applicability of Freundlichs isotherm model for the leaching of solidified hazardous waste using cementitious binders

  • Jong Ho Youn;Heo
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.9.2-19
    • /
    • 1993
  • A laboratory study was conducted to investigate the immobilization of the laboratory waste sludge, mainly from chemical oxygen demand (COD) waste, using cementitious binders. The binders were: Ordinary Portland Cement (OPC), and lime-Rice Husk Ash (RHA) cement. The economic evaluation was done for three different kinds of cementitious binders, namely, OPC, Portaind Rice Husk Ash Cement (PRHAC) which contained rice husk ash U percent by dry weight, and lime-RHA cement. The result showed that lime-RHA cement was the cheapest. The applicability of Freundlich's desorption isotherm was studied to assess the teachability of sludges. The teachability of cement mortars was found to follow the desorption isotherms. Therefore, it was concluded that based on this test, the leachate concentrations of the solidified heavy metals could be predicted, approximately by the Freundlich's isotherm desorption modeling.

  • PDF

Comparison between the Application Results of NNM and a GIS-based Decision Support System for Prediction of Ground Level SO2 Concentration in a Coastal Area

  • Park, Ok-Hyun;Seok, Min-Gwang;Sin, Ji-Young
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.111-119
    • /
    • 2009
  • A prototype GIS-based decision support system (DSS) was developed by using a database management system (DBMS), a model management system (MMS), a knowledge-based system (KBS), a graphical user interface (GUI), and a geographical information system (GIS). The method of selecting a dispersion model or a modeling scheme, originally devised by Park and Seok, was developed using our GIS-based DSS. The performances of candidate models or modeling schemes were evaluated by using a single index(statistical score) derived by applying fuzzy inference to statistical measures between the measured and predicted concentrations. The fumigation dispersion model performed better than the models such as industrial source complex short term model(ISCST) and atmospheric dispersion model system(ADMS) for the prediction of the ground level $SO_2$ (1 hr) concentration in a coastal area. However, its coincidence level between actual and calculated values was poor. The neural network models were found to improve the accuracy of predicted ground level $SO_2$ concentration significantly, compared to the fumigation models. The GIS-based DSS may serve as a useful tool for selecting the best prediction model, even for complex terrains.

The prediction of atmospheric concentrations of toluene using artificial neural network methods in Tehran

  • Asadollahfardi, Gholamreza;Aria, Shiva Homayoun;Mehdinejad, Mahdi
    • Advances in environmental research
    • /
    • v.4 no.4
    • /
    • pp.219-231
    • /
    • 2015
  • In recent years, raising air pollutants has become as a big concern, especially in metropolitan cities such as Tehran. Therefore, forecasting the level of pollutants plays a significant role in air quality management. One of the forecasting tools that can be used is an artificial neural network which is able to model the complicated process of air pollution. In this study, we applied two different methods of artificial neural networks, the Multilayer Perceptron (MLP) and Radial Basis Function (RBF), to predict the hourly air concentrations of toluene in Tehran. Hourly temperature, wind speed, humidity and $NO_x$ were selected as inputs. Both methods had acceptable results; however, the RBF neural network produced better results. The coefficient of determination ($R^2$) between the observed and predicted data was 0.9642 and 0.99 for MLP and RBF neural networks, respectively. The results of the mean bias errors (MBE) were 0.00 and -0.014 for RBF and MLP, respectively which indicate the adequacy of the models. The index of agreement (IA) between the observed and predicted data was 0.999 and 0.994 in the RBF and the MLP, respectively which indicates the efficiency of the models. Finally, sensitivity analysis related to the MLP neural network determined that temperature was the most significant factor in air concentration of toluene in Tehran which may be due to the volatile nature of toluene.

Analysis of Domestic and Foreign Contributions using DDM in CMAQ during Particulate Matter Episode Period of February 2014 in Seoul (2014년 2월 서울의 고농도 미세먼지 기간 중에 CMAQ-DDM을 이용한 국내외 기여도 분석)

  • Kim, Jong-Hee;Choi, Dae-Ryun;Koo, Youn-Seo;Lee, Jae-Bum;Park, Hyun-Ju
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.1
    • /
    • pp.82-99
    • /
    • 2016
  • This study was carried out to understand the regional contribution of Particulate Matter (PM) emissions from East Asia ($82^{\circ}{\sim}149^{\circ}E$, $18^{\circ}{\sim}53^{\circ}N$) to Seoul during high concentration period in February 2014. The Community Multi-scale Air Quality (CMAQ) version 5.0.2 with Decoupled Direct Method (DDM) was used to analyze levels of contributions over Seoul. In order to validate model performance of the CMAQ, predicted PM and its chemical species concentrations were compared to observations in China and Seoul. Model predictions could depict the daily and hourly variations of observed PM. The calculated PM concentrations, however, had a tendency of underestimation. The discrepancies are due to uncertainties of meteorological data, emission inventories and CMAQ model itself. The high PM concentration in Seoul was induced by stationary anticyclone over the West Coast of Korea during 24 to 27 February. The DDM in CMAQ was used to analyze the contributions of emissions from East Asia on Seoul during this PM episode. $PM_{10}$ concentration in Seoul is contributed by 39.77%~53.19% from China industrial and urban region, 15.37%~37.10% from South Korea, and 9.03%~18.05% North Korea. These indicate that $PM_{10}$ concentrations in Seoul during the episode period are dominated by long-range transport from China region as well as domestic sources. It was also found that the largest contribution region in China were Shandong peninsula during the PM event period.

Quantitative Risk Assessment Method for Metals in Water Body using WASP (WASP 모의를 이용한 하천 수계 중금속 위해성평가 방법)

  • Shin, Yu-Ri;Yoon, Chun-Gyeong;Jeon, Na-Jeong;Rhee, Han-Pil
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.629-636
    • /
    • 2010
  • According to the spatial movements of the Nak-dong river watershed, the changes in heavy metal concentrations were simulated by WASP7.3. The risk assessment was performed using the predicted data of WASP7.3. The target heavy metal was manganese (Mn). In the simulated manganese data of WASP7.3, the average concentration by regions was from 0.03 mg/L to 0.07 mg/L. It is lower than drinking water standard in korea. The risk assessment was presented that it was high at the junction of Nak-dong river and Kumho river. It was influenced by the discharge of industrial complexes and large cities which were located in the junction. In comparison of drinking water standard and predicted data of WASP7.3 risk assessment, whole watershed was also low level at predicted data. However, to keep the similar risk value ($10^{-7}$) in adults and children anywhere, it requires the additional treatment of the point source discharges. It was also reflected by regions. Through this study, it was possible to evaluate heavy metal influence in unattainable monitoring regions and to estimate heavy metal addition and reduction by locations. Therefore, the outcomes of WASP7.3 can connect with the risk assessment and it can evaluate the safety of human by regions.

Assessing the Health Benefits of the Seoul Air Quality Management Plan Using BenMAP

  • Park, Jeong-Im;Bae, Hyun-Joo
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.6
    • /
    • pp.571-577
    • /
    • 2006
  • Health benefits from implementing air quality control measures were assessed using the Environmental Benefits Mapping and Analysis Program (BenMAP). BenMAP developed by US EPA is a GIS-based software tool that estimates the health impacts and associated economic values connected with changes in ambient air pollution. Once a set of BenMAP-required data was collected, the health benefits from implementing Seoul Air Quality Management Plan (SAQMP), an official AQ improvement plan for Seoul Metropolitan Area, was assessed using BenMAP. The PM10 concentrations assuming the SAQMP implemented successfully were predicted with the MM5 (Mesoscale Meteorological model version 5)/CMAQ (Community Multiscale Air Quality) model. A PM 10 exposure related premature mortality function was adopted trom a well-known epidemiology study. Economic valuation functions driven from benefit transfer methods were utilized. Through the SAQMP, PM10 concentrations were estimated to be lowered by $15{\mu}g/m^3\;to\;75{\mu}g/m^3$ depending on air quality modeling grids. 5,569 premature deaths (95% CI $3,264{\sim}7,809$ deaths) could be avoided in the Seoul Metropolitan Area. The economic value of the deaths avoided was estimated to $13.2 billion $(95%\;CI\;$890\;million{\sim}$28.2\;billion)$ using the benefit transfer value. BenMAP could be a useful tool for developing effective air quality improvement policy, enabling the policy makers to anticipate the effects of regulatory changes on people's health and the economy.