• Title/Summary/Keyword: precursor particle size

Search Result 213, Processing Time 0.026 seconds

Synthesis of Bi Nanoparticles Using a Modified Polyol Method (변형 폴리욜법에 의한 Bi 나노입자의 제조)

  • Cho, Hye-Jung;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.2
    • /
    • pp.61-66
    • /
    • 2012
  • Bismuth(Bi) nanoparticles were synthesized at room temperature by a modified polyol process using bismuth(III) carbonate basic as precursor. In addition, some characteristics of the synthesis with respect to the exchange of a capping agent/surface stabilizer and solvent type were observed. When polyvinylpyrroldone was added, the finest Bi nanoparticles were synthesized in diethylene glycol(DEG), while the coarsest nanoparticles were formed in polyethylene glycol(PEG). The particle size immediately after synthesis was proportionate to final particle size which was determined by particle growth through coalescence and aggregation during drying. As a result, the finest Bi particles with the diameter range of several tens of nanometers - 300 nm were finally obtained in DEG. Regardless of the type of capping agent/surface stabilizer, extensive coalescence and aggregation behavior occurred in PEG, resulting in final products agglomerated with coarse particles.

Nano particle size control of Pt/C catalysts manufactured by the polyol process for fuel cell application (폴리올법으로 제조된 Pt/C 촉매의 연료전지 적용을 위한 나노 입자 크기제어)

  • Joon Heo;Hyukjun Youn;Ji-Hun Choi;Chae Lin Moon;Soon-Mok Choi
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.437-442
    • /
    • 2023
  • This research aims to enhance the efficiency of Pt/C catalysts due to the limited availability and high cost of platinum in contemporary fuel cell catalysts. Nano-sized platinum particles were distributed onto a carbon-based support via the polyol process, utilizing the metal precursor H2PtCl6·6H2O. Key parameters such as pH, temperature, and RPM were carefully regulated. The findings revealed variations in the particle size, distribution, and dispersion of nano-sized Pt particles, influenced by temperature and pH. Following sodium hydroxide treatment, heat treatment procedures were systematically executed at diverse temperatures, specifically 120, 140, and 160 ℃. Notably, the thermal treatment at 140 ℃ facilitated the production of Pt/C catalysts characterized by the smallest platinum particle size, measuring at 1.49 nm. Comparative evaluations between the commercially available Pt/C catalysts and those synthesized in this study were meticulously conducted through cyclic voltammetry, X-ray diffraction (XRD), and field-emission scanning electron microscopy-energy dispersive X-ray spectroscopy (FE-SEM EDS) methodologies. The catalyst synthesized at 160 ℃ demonstrated superior electrochemical performance; however, it is imperative to underscore the necessity for further optimization studies to refine its efficacy.

Synthesis of Silicon-Carbon by Polyaniline Coating and Electrochemical Properties of the Si-C|Li Cell

  • Doh, Chil-Hoon;Kim, Seong Il;Jeong, Ki-Young;Jin, Bong-Soo;An, Kay Hyeok;Min, Byung Chul;Moon, Seong-In;Yun, Mun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1175-1180
    • /
    • 2006
  • Si-C composites were prepared by the carbonization of polyaniline (PAn) coated on silicone powder. The physical and electrochemical properties of the Si-C composites were characterized by particle-size analysis, X-ray diffraction, scanning electron microscopy, and battery electrochemical tests. The average particle size of Si was increased by the coating of Pan but somewhat reduced by the carbonization to give silicone-carbon composites. The co-existence of crystalline silicone and amorphous-like carbon was confirmed by XRD analyses. SEM photos showed that the silicone particles were well covered with carbonaceous materials, depending on the PAn content. Si-C$\mid$Li cells were fabricated using the Si-C composites and tested using galvanostatic charge-discharge. Si-C$\mid$Li cells gave better electrochemical properties than Si|Li cells. Si-C$\mid$Li cells using Si-C from HCl-undoped precursor PAn showed better electrochemical properties than precursor PAn doped in HCl. The addition of an electrolyte containing 4-fluoroethylene carbonate (FEC) increased the initial discharge capacity. Also, another electrochemical test, the galvanostatic charge-discharge test with GISOC (gradual increasing of the state of charge) was carried out. Si-C(Si:PAn = 50:50 wt. ratio)|Li cell showed 414 mAh/g of reversible specific capacity, 75.7% of IIE (initial intercalation efficiency), 35.4 mAh/g of IICs (surface irreversible specific capacity).

Characteristics of Zirconia Nanoparticles with Hydrothermal Synthesis Process (수열합성법으로 제조된 지르코니아의 나노분말 특성)

  • Cho, Chi Wook;Tai, Weon Pil;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.564-569
    • /
    • 2014
  • Zirconia nanoparticles were synthesized by hydrothermal process, and experimental parameters such as reaction temperature, reaction time, kind and concentration of precipitator, kind of precursor were varied. Particle sizes and crystalline phases of each synthesized nanoparticles were analyzed with X-ray diffraction and FE-scanning electron microscope (SEM). The particle size and crystallization of zirconia increased with increasing concentration of precipitator. The growth rate of particle sizes when NaOH as a precipitator was used also increased more than that of KOH. Therefore, the use of KOH rather than NaOH was more effective in the control of particle sizes. An amorphous zirconia nanoparticle was found in 4 h of hydrothermal reaction, but the monoclinic zirconia nanoparticle was found in 8 h and over of hydrothermal reaction, and the width of nanoparticles was slightly slimmed and the length of nanoparticles was slightly extended with increasing reaction time. The smallest particle size was produced at the same synthesis condition when zirconium chloride among the precursors such as zirconium (IV) acetate, zirconium nitrate and zirconium chloride was used.

Preparation of TiO2 Nanoparticles from Titanium Tetraisopropoxide Using an Aerosol Microreactor (에어로졸 마이크로반응기에 의한 Titanium Tetraisopropoxide로부터 TiO2 나노입자 제조)

  • Choi, Jae Gil;Park, Kyun Young
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.609-615
    • /
    • 2005
  • $TiO_2$ particles, 30-300 nm in diameter, were prepared by thermal decomposition of titanium tetraisopropoxide (TTIP) using an aerosol microreactor, by which about $1{\mu}l$ of the liquid precursor is injected into an evaporator, 1 cc in volume, and vaporized precursor is then transported by nitrogen as a bolus to a tubular reactor 4 mm in diameter and 35 cm in length. Investigated were the effects of the reactor temperature and the concentration of TTIP vapor on the morphology, particle size distribution and crystalline structure of produced $TiO_2$ particles. With TTIP vapor concentration kept constant at 1 mol%, the reactor temperature was varied from 300 to 500 and $700^{\circ}C$. The primary particle size decreased with increasing the temperature, and the size distributions were mono-modal at 300 and $500^{\circ}C$, but bi-modal at $700^{\circ}C$. The TTIP vapor concentration was increased from 1 to 3.5 and 7 mol%, holding the reactor temperature at $700^{\circ}C$. The bi-modal distribution seen at the concentration of 1 mol% disappeared and the number of particles composing an agglomerate increased at the higher concentrations. These effects of the reactor temperature and the precursor concentration were discussed in comparison with experimental results reported earlier.

Synthesis of Electrode Catalyst for Polymer Electrolyte Membrane Fuel Cells Using Colloidal Method (콜로이드법을 이용한 고분자전해질 연료전지용 백금전극 촉매의 제조)

  • Park, Jin-Nam
    • Clean Technology
    • /
    • v.19 no.1
    • /
    • pp.59-64
    • /
    • 2013
  • Pt/carbon Electrode catalysts for PEMFC were synthesized using colloidal method. PSA (platinum sulfite acid) was used as a Pt precursor and CPA (chloroplatinic acid) was also used to replace relatively expensive PSA. Electrode catalysts prepared using PSA showed Pt particle size less than 3.5 nm and Pt yield higher than 90% in 10~40 wt% Pt loading. Electrode catalysts prepared using CPA also showed Pt particle size less than 4.4 nm and Pt yield higher than 80% in 10~40 wt% Pt loading. The MEA (membrane electrode assembly) using 20 wt% Pt/VXC72 showed equivalent I-V curve comparing with commercial electrode catalyst in single cell test.

The effect of physicochemical factors on the coagulation process (응집에 영향을 미치는 물리-화학 인자)

  • Kim, Sung-Goo;Ryu, Jae-Ick;Ryou, Dong-Choon;Kim, Jeong-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.1
    • /
    • pp.81-87
    • /
    • 1997
  • Coagulation is very important process in water works. The subsequent processes are directly affected by this process. Many factors such as turbidity, alkalinity, pH, hardness, total organic carbon(TOC), velocity gradient and flocculation time effect on coagulation process. Among these factors, specially TOC is being concerned target substance to be removed due to trihalomenthanes(THMs) precursor and alkalinity is being one of the major parameter for removing TOC. We have researched the consumption of coagulant with TOC alkalinity concentration of water and removal efficiency of residual TOC and turbidity with alkalinity. Furthermore we have investigated particle size distributions with velocity gradient and alkalinity. The consumption of coagulant was proportionally increased to TOC and alkalinity concentration and the removal of TOC in Nakdong river water was very difficult more than 150 mg/l in alkalinity but large morecular weight organic such as humic acid could be removed easily. Coagulation of low alkalinity water was more rapidly occured than of high alkalinity water by analyzing the particle size distributions. High alkalinity water needed higher mixing energy for a good coagulation within limited flocculation time.

  • PDF

Synthesis of YAG:Ce3+ Phosphor Powders by Polymer Solution Route and Alumina Seed Application (폴리머용액법 및 알루미나 seed를 도입한 YAG:Ce3+ 형광체 분말 합성)

  • Kim, Yong-Hyeon;Lee, Sang-Jin
    • Journal of Powder Materials
    • /
    • v.20 no.1
    • /
    • pp.37-42
    • /
    • 2013
  • $YAG:Ce^{3+}$ phosphor powders were synthesized using a $Al_2O_3$ seed (average particle size: 5 ${\mu}m$) by the polymer solution route. PVA solution was added to the sol precursors consisting of the seed powder and metal nitrate salts for homogeneous mixing in atomic scale. All dried precursor gels were calcined at $500^{\circ}C$ and then heated at $1400^{\circ}C{\sim}1500^{\circ}C$ in $N_2/H_2$ atmosphere. The final powders were characterized by using XRD, SEM, PSA, PL and PKG test. All synthesized powders were crystallized to YAG phase without intermediate phases of YAM or YAP. The phosphor properties and morphologies of the synthesized powders were strongly dependent on the PVA content. Finally, the synthesized $YAG:Ce^{3+}$ phosphor powder heated at $1500^{\circ}C$, which is prepared from 12:1 PVA content and has an average particle size of 15 ${\mu}m$, showed similar phosphor properties to a commercial phosphor powder.

Pulverization and Densification Behavior of YAG Powder Synthesized by PVA Polymer Solution Method

  • Im, Hyun-Ho;Lee, Sang-Jin
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.573-580
    • /
    • 2020
  • YAG (Yttrium Aluminum Garnet, Y3Al5O12) has excellent plasma resistance and recently has been used as an alternative to Y2O3 as a chamber coating material in the semiconductor process. However, due to the presence of an impurity phase and difficulties in synthesis and densification, many studies on YAG are being conducted. In this study, YAG powder is synthesized by an organic-inorganic complex solution synthesis method using PVA polymer. The PVA solution is added to the sol in which the metal nitrate salts are dissolved, and the precursor is calcined into a porous and soft YAG powder. By controlling the molecular weight and the amount of PVA polymer, the effect on the particle size and particle shape of the synthesized YAG powder is evaluated. The sintering behavior of the YAG powder compact according to PVA type and grinding time is studied through an examination of its microstructure. Single phase YAG is synthesized at relatively low temperature of 1,000 ℃ and can be pulverized to sub-micron size by ball milling. In addition, sintered YAG with a relative density of about 98 % is obtained by sintering at 1,650 ℃.

Characterization of LiNi1/3Co1/3Mn1/3O2 Cathode Materials Prepared from Different Precursors in Lithium Rechargeable Batteries (리튬2차전지에서 다른 전구체로부터 합성된 LiNi1/3Co1/3Mn1/3O2 양극 활물질의 특성)

  • Kim, Sung-Keun;Hong, Sung-Wan;Han, Kyeong-Sik;Lee, Hong-Ki;Shim, Joong-Pyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.1029-1035
    • /
    • 2008
  • $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ cathode materials prepared from different precursors in lithium rechargeable batteries were characterized by various analytical methods. $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ powders were synthesized by using solid-state reaction method and their physical and chemical properties were analyzed by XRD, SEM, particle size analyzer and TCP-AES. These materials showed different crystallinity, particle size, surface morphology and chemical composition. Also, the charge/discharge cycling of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ electrodes was carried out under various cut-off voltages and it showed different behaviors. It was found that the electrochemical cyclability of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ was strongly related to its crystallinity.