This study was carried out to verify and predict the soil informations such as the contents of organic matter(OM) and Mg and pH of the soil. The predictability of spacial variation in the paddy field was examined by analyzing the various soil information. The prediction models for the OM pH, and Mg, were developed using inverse distance weighted (IDW), triangulated irregular network(TIN) and Kriging model. The determination of coefficients of linear and spherical Kriging models were 0.756 and 0.578, respectively, and were very low in comparison with other soil information. For IDW and TIN model, the determination of coefficients were 1.000 and hence the performance of the models was found to be excellent. The developed models were validated using unknown soil sample obtained In 2000 and 2001. From the analysis of relationship between the measured pH and predicted 0.9353. For prediction of Mg, the determination of coefficient is more than 0.8. Since the determination of coefficients of developed models for OM were relatively low, it may be difficult to predict the content of OM using the developed models. For further study, the additional works to enhance the performance of the prediction models for soil information are required.
Sattar, Muhammad Nouman;Park, Dong-Hyeok;Kwon, Hyun-Han;Kim, Tae-Woong
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.150-150
/
2019
The development of prolong and severe drought can directly impact on the environment, agriculture, economics and society of country. A lot of efforts have been made across worldwide in the planning, monitoring and mitigation of drought. Currently, different drought indices such as the Palmer Drought Severity Index (PDSI), Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI) are developed and most commonly used to monitor drought characteristics quantitatively. However, it will be very meaningful and essential to develop a more effective technique for assessment and monitoring of onset and end of drought. Therefore, in this study, the hidden Markov Bayesian classifier (MBC) was employed for the assessment of onset and end of meteorological drought classes. The results showed that the probabilities of different classes based on the MBC were quite suitable and can be employed to estimate onset and end of each class for meteorological droughts. The classification results of MBC were compared with SPI and with past studies which proved that the MBC was able to account accuracy in determining the accurate drought classes. For more performance evaluation of classification results confusion matrix was used to find accuracy and precision in predicting the classes and their results are also appropriate. The overall results indicate that the MBC was effective in predicating the onset and end of drought events and can utilized for monitoring and management of short-term drought risk.
Park, Ji Hui;Kim, Hyung Suk;Song, Kwon Bum;Yi, Sung Ju
Journal of Climate Change Research
/
v.8
no.3
/
pp.247-255
/
2017
In this study, GHG inventory on 17 local government between 2005 and 2014 is build up using 'GHG emission estimation guideline (2016. 2) for local government' developed and distributed by KECO. This covers all the sectors should be included in national GHG inventory, which are energy, industrial process, agriculture, AFOLU, and waste. In addition, six GHGs, carbon dioxide, metane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, sulphur hexafluoride declared in Kyoto protocol are estimated to reflect utmost precision. Indirect esissions, such as electricity, heat and waste generation are separately estimated as well as direct emissions to help local government to establish substantial and implementable reduction measures of GHGs.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.10a
/
pp.217-220
/
2014
Wireless sensor network(WSN) consists by a large number of low-cost micro-sensor nodes, collaborate to achieve the perception of information collection, processing and transmission tasks in deployment area. It can be widely used in national defense, intelligent transportation, medical care, environmental monitoring, precision agriculture, and industrial automation and many other areas. One of the key technologies of sensor networks is the data maintenance management technology. In this paper we analyze the data management technology of wireless sensor network and pointed their problems.
Dong, Jiuqing;Fuentes, Alvaro;Yoon, Sook;Kim, Taehyun;Park, Dong Sun
Smart Media Journal
/
v.11
no.4
/
pp.38-45
/
2022
Object detection models have become the current tool of choice for plant disease detection in precision agriculture. Most existing research improves the performance by ameliorating networks and optimizing the loss function. However, the data-centric part of a whole project also needs more investigation. In this paper, we proposed a systematic strategy with three different annotation methods for plant disease detection: local, semi-global, and global label. Experimental results on our paprika disease dataset show that a single class annotation with semi-global boxes may improve accuracy. In addition, we also studied the noise factor during the labeling process. An ablation study shows that annotation noise within 10% is acceptable for keeping good performance. Overall, this data-centric numerical analysis helps us to understand the significance of annotation methods, which provides practitioners a way to obtain higher performance and reduce annotation costs on plant disease detection tasks. Our work encourages researchers to pay more attention to label quality and the essential issues of labeling methods.
Muhammad Junaid;Sohail Jabbar;Muhammad Munwar Iqbal;Saqib Majeed;Mubarak Albathan;Qaisar Abbas;Ayyaz Hussain
International Journal of Computer Science & Network Security
/
v.23
no.3
/
pp.57-66
/
2023
Rice is an important food crop for most of the population in the world and it is largely cultivated in Pakistan. It not only fulfills food demand in the country but also contributes to the wealth of Pakistan. But its production can be affected by climate change. The irregularities in the climate can cause several diseases such as brown spots, bacterial blight, tungro and leaf blasts, etc. Detection of these diseases is necessary for suitable treatment. These diseases can be effectively detected using deep learning such as Convolution Neural networks. Due to the small dataset, transfer learning models such as vgg16 model can effectively detect the diseases. In this paper, vgg16, inception and xception models are used. Vgg16, inception and xception models have achieved 99.22%, 88.48% and 93.92% validation accuracies when the epoch value is set to 10. Evaluation of models has also been done using accuracy, recall, precision, and confusion matrix.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.11
/
pp.3003-3029
/
2023
The rapid evolution of the IoT has paved the way for new opportunities in smart city domains, including e-health, smart homes, and precision agriculture. However, this proliferation of services demands effective SLAs between customers and service providers, especially for critical services. Difficulties arise in maintaining the integrity of such agreements, especially in vulnerable wireless environments. This study proposes a novel SLA management model that uses an SDN-Enabled WSN consisting of wireless nodes to interact with smart contracts in a straightforward manner. The proposed model ensures the persistence of network metrics and SLA provisions through smart contracts, eliminating the need for intermediaries to audit payment and compensation procedures. The reliability and verifiability of the data prevents doubts from the contracting parties. To meet the high-performance requirements of the blockchain in the proposed model, low-cost algorithms have been developed for implementing blockchain technology in wireless sensor networks with low-energy and low-capacity nodes. Furthermore, a cryptographic signature control code is generated by wireless nodes using the in-memory private key and the dynamic random key from the smart contract at runtime to prevent tampering with data transmitted over the network. This control code enables the verification of end-to-end data signatures. The efficient generation of dynamic keys at runtime is ensured by the flexible and high-performance infrastructure of the SDN architecture.
The exponential increase in nitrate pollution of river water poses an immediate threat to public health and the environment. This contamination is primarily due to various human activities, which include the overuse of nitrogenous fertilizers in agriculture and the discharge of nitrate-rich industrial effluents into rivers. As a result, the accurate prediction and identification of contaminated areas has become a crucial and challenging task for researchers. To solve these problems, this work leads to the prediction of nitrate contamination using machine learning approaches. This paper presents a novel approach known as Grey Wolf Optimizer (GWO) based on the Stacked Ensemble approach for predicting nitrate pollution in the Cauvery Delta region of Tamilnadu, India. The proposed method is evaluated using a Cauvery River dataset from the Tamilnadu Pollution Control Board. The proposed method shows excellent performance, achieving an accuracy of 93.31%, a precision of 93%, a sensitivity of 97.53%, a specificity of 94.28%, an F1-score of 95.23%, and an ROC score of 95%. These impressive results underline the demonstration of the proposed method in accurately predicting nitrate pollution in river water and ultimately help to make informed decisions to tackle these critical environmental problems.
Sil Jin;Jimin Song;Jiho Choi;Yongsik Jin;Jae Jin Jeong;Sang Jun Lee
IEMEK Journal of Embedded Systems and Applications
/
v.19
no.1
/
pp.1-8
/
2024
Robotic arms have been widely utilized in various labor-intensive industries such as manufacturing, agriculture, and food services, contributing to increasing productivity. In the development of industrial robotic arms, camera sensors have many advantages due to their cost-effectiveness and small sizes. However, estimating object positions is a challenging problem, and it critically affects to the robustness of object manipulation functions. This paper proposes a method for estimating the 3D positions of objects, and it is applied to a pick-and-place task. A deep learning model is utilized to detect 2D bounding boxes in the image plane, and the pinhole camera model is employed to compute the object positions. To improve the robustness of measuring the 3D positions of objects, we analyze the effect of lens distortion and introduce a false positive filtering process. Experiments were conducted on a real-world scenario for moving medicine bottles by using a camera-based manipulator. Experimental results demonstrated that the distortion removal and false positive filtering are effective to improve the position estimation precision and the manipulation success rate.
Kim, Jihyun;Choi, Jeong-Heui;Kang, Tae-Woo;Kang, Taegu;Hwang, Soon-Hong;Shim, Jae-Han
Korean Journal of Environmental Agriculture
/
v.36
no.3
/
pp.154-160
/
2017
BACKGROUND:This study was carried out to establish an efficient sample preparation for the simultaneous determination of bisphenols (BPs) in river water samples using gas chromatography-mass spectrometry (GC-MS). Sample preparation was examined with conventional extraction methods, such as solid-phase extraction (SPE) and liquid-liquid extraction (LLE), and their efficiency was compared with validation results, including linearity of calibration curve, method detection limit (MDL), limit of quantification (LOQ), accuracy, and precision. METHODS AND RESULTS:The BPs (bisphenol A, BPA; bisphenol B, BPB; bisphenol C, BPC; bisphenol E, BPE; bisphenol F, BPF; bisphenol S, BPS) were analyzed using GC-MS. The range of MDLs by SPE and LLE methods was $0.0005{\sim}0.0234{\mu}g/L$ and $0.0037{\sim}0.2034{\mu}g/L$, and that of LOQs was $0.0015{\sim}0.0744{\mu}g/L$ and $0.0117{\sim}0.6477{\mu}g/L$, respectively. The calibration curve obtained from standard solution of $0.004{\sim}4.0{\mu}g/L$ (SPE) and $0.016{\sim}16{\mu}g/L$ (LLE) showed good linearity with $r^2$ value of 0.9969 over. Accuracy was 93.2~108% and 97.4~120%, and precision was 1.7~4.6% and 0.7~6.5%, respectively. The values of MDL and LOQ resulted from the SPE method were higher than those from the LLE method, particularly those values of BPA were highest among the BPs. Based on the results, the SPE method was applied to determine the BPs in river water samples. Water samples were collected from mainstream, tributary and sewage wastewater treatment plants (SWTPs) in the Yeongsan river basin. The concentration of BPB, BPC, BPE, BPF and BPS were not detected in all sites, whereas BPA was ranged $0.0095{\sim}0.2583{\mu}g/L$, which was $0.0166{\sim}0.0810{\mu}g/L$ for mainstreams, $0.0095{\sim}0.2583{\mu}g/L$ for tributaries, $0.0352{\sim}0.1217{\mu}g/L$ for SWTPs. CONCLUSION: From these results, the SPE method was very effective for the simultaneous determination of BPs in river water samples using GC-MS. We provided that it is a convenient, reliable and sensitive method enough to monitor and understand the fate of the BPs in aquatic ecosystems.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.