• 제목/요약/키워드: precipitation-streamflow coupling method

검색결과 2건 처리시간 0.015초

단기 예측강우를 활용한 실시간 유량 예측기법의 적용 (Real-Time Application of Streamflow Forecast Using Precipitation Forecast)

  • 김진훈;윤원진;배덕효
    • 한국수자원학회논문집
    • /
    • 제38권1호
    • /
    • pp.11-23
    • /
    • 2005
  • 본 연구에서는 단기 예측강우를 활용하여 실시간 유량을 예측할 수 있는 기상-수자원 연계기법을 개발하였다. 이를 위해 기상청의 RDAPS 강수자료와 저류함수(SFM) 모델을 통해 소양강댐 상류유역의 댐유입량을 계산하고 그 정확도를 분석하였다. 대상 사례기간인 2003년 7월 18일부터 2003년 7월 24일까지 RDAPS 강우예측자료의 정확도를 평가한 결과 RDAPS 및 관측 강수량 사이의 정성적 평가에서 매우 우수한 정확도를 보이고, 수자원 측면에서 필요한 정량적 성격을 충족시키는 것으로 나타났다. RDAPS-SFM 연계기법을 통한 하천유량 계산에서도 그 정확도가 비교적 높은 것으로 검토되어 현재의 하천 유량 예측에서 기상 수치예보자료의 활용성은 매우 높은 것으로 사료된다.

Assessing the Impact of Climate Change on Water Resources: Waimea Plains, New Zealand Case Example

  • Zemansky, Gil;Hong, Yoon-Seeok Timothy;Rose, Jennifer;Song, Sung-Ho;Thomas, Joseph
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.18-18
    • /
    • 2011
  • Climate change is impacting and will increasingly impact both the quantity and quality of the world's water resources in a variety of ways. In some areas warming climate results in increased rainfall, surface runoff, and groundwater recharge while in others there may be declines in all of these. Water quality is described by a number of variables. Some are directly impacted by climate change. Temperature is an obvious example. Notably, increased atmospheric concentrations of $CO_2$ triggering climate change increase the $CO_2$ dissolving into water. This has manifold consequences including decreased pH and increased alkalinity, with resultant increases in dissolved concentrations of the minerals in geologic materials contacted by such water. Climate change is also expected to increase the number and intensity of extreme climate events, with related hydrologic changes. A simple framework has been developed in New Zealand for assessing and predicting climate change impacts on water resources. Assessment is largely based on trend analysis of historic data using the non-parametric Mann-Kendall method. Trend analysis requires long-term, regular monitoring data for both climate and hydrologic variables. Data quality is of primary importance and data gaps must be avoided. Quantitative prediction of climate change impacts on the quantity of water resources can be accomplished by computer modelling. This requires the serial coupling of various models. For example, regional downscaling of results from a world-wide general circulation model (GCM) can be used to forecast temperatures and precipitation for various emissions scenarios in specific catchments. Mechanistic or artificial intelligence modelling can then be used with these inputs to simulate climate change impacts over time, such as changes in streamflow, groundwater-surface water interactions, and changes in groundwater levels. The Waimea Plains catchment in New Zealand was selected for a test application of these assessment and prediction methods. This catchment is predicted to undergo relatively minor impacts due to climate change. All available climate and hydrologic databases were obtained and analyzed. These included climate (temperature, precipitation, solar radiation and sunshine hours, evapotranspiration, humidity, and cloud cover) and hydrologic (streamflow and quality and groundwater levels and quality) records. Results varied but there were indications of atmospheric temperature increasing, rainfall decreasing, streamflow decreasing, and groundwater level decreasing trends. Artificial intelligence modelling was applied to predict water usage, rainfall recharge of groundwater, and upstream flow for two regionally downscaled climate change scenarios (A1B and A2). The AI methods used were multi-layer perceptron (MLP) with extended Kalman filtering (EKF), genetic programming (GP), and a dynamic neuro-fuzzy local modelling system (DNFLMS), respectively. These were then used as inputs to a mechanistic groundwater flow-surface water interaction model (MODFLOW). A DNFLMS was also used to simulate downstream flow and groundwater levels for comparison with MODFLOW outputs. MODFLOW and DNFLMS outputs were consistent. They indicated declines in streamflow on the order of 21 to 23% for MODFLOW and DNFLMS (A1B scenario), respectively, and 27% in both cases for the A2 scenario under severe drought conditions by 2058-2059, with little if any change in groundwater levels.

  • PDF