• Title/Summary/Keyword: precipitation indicators

Search Result 57, Processing Time 0.031 seconds

Global Assessment of Climate Change-Associated Drought Risk

  • Kim, Heey Jin;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.397-397
    • /
    • 2019
  • With the consequences of climate change becoming more evident, research on climate-associated risks has become a basis for climate adaptation and mitigation. Amongst the different sectors and natural resources considered in assessing such risks, drought is one impact to our environment that experiences stress from climate change but is often overlooked and has the potential to bring severe consequences when drought occurs. For example, when temperatures are higher, water demand increases and water supply decreases; when precipitation patterns fluctuate immensely, floods and droughts occur more frequently at greater magnitudes, putting stress on ecosystems. Hence, it is important for us to evaluate drought risk to observe how different climate change and socioeconomic scenarios can affect this vital life resource. In this study, we review the context of drought risk on the basis of climate change impacts and socioeconomic indicators. As underlined in the IPCC AR5 report, the risks are identified by understanding the vulnerability, exposure, and hazards of drought. This study analyzed drought risk on a global scale with different RCP scenarios projected until the year 2099 with a focus on the variables population, precipitation, water resources, and temperature.

  • PDF

Analysis of Farm Management Stabilization Effects Using Weather Derivatives for Apple Farmers in Kyeongpuk District (날씨파생상품을 이용한 경북지역 사과농가 경영안정 효과 분석)

  • Yun, Sung-Wuk;Choi, Jang-Hoon;Chung, Won-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.28 no.4
    • /
    • pp.459-475
    • /
    • 2020
  • This study analyzes weather derivatives as an alternative risk management tool to stabilize farm revenue to complement the existing crop insurance program which suffers from asymmetric information problems such as adverse selection, moral hazard, and verifiability. We estimated apple yield functions to observe the relationship between yields and weather indices such as temperature and precipitation. Based on the estimated yield functions we designed weather futures and options products underlying temperature and precipitation, and calculated the prices of futures and options by two different approaches, historical distribution and Monte Carlo simulation. We found that weather futures and options stabilize farm revenue based on the estimated four risk indicators: Coefficient of Variation, Value at Risk, Certainty Equivalence, and Risk Premium. As a result, weather derivatives could be considered as a potential farm risk management tool through studying more in legal and institutional strategies and developing various derivatives products.

Development of Machine Learning Based Precipitation Imputation Method (머신러닝 기반의 강우추정 방법 개발)

  • Heechan Han;Changju Kim;Donghyun Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.3
    • /
    • pp.167-175
    • /
    • 2023
  • Precipitation data is one of the essential input datasets used in various fields such as wetland management, hydrological simulation, and water resource management. In order to efficiently manage water resources using precipitation data, it is essential to secure as much data as possible by minimizing the missing rate of data. In addition, more efficient hydrological simulation is possible if precipitation data for ungauged areas are secured. However, missing precipitation data have been estimated mainly by statistical equations. The purpose of this study is to propose a new method to restore missing precipitation data using machine learning algorithms that can predict new data based on correlations between data. Moreover, compared to existing statistical methods, the applicability of machine learning techniques for restoring missing precipitation data is evaluated. Representative machine learning algorithms, Artificial Neural Network (ANN) and Random Forest (RF), were applied. For the performance of classifying the occurrence of precipitation, the RF algorithm has higher accuracy in classifying the occurrence of precipitation than the ANN algorithm. The F1-score and Accuracy values, which are evaluation indicators of the classification model, were calculated as 0.80 and 0.77, while the ANN was calculated as 0.76 and 0.71. In addition, the performance of estimating precipitation also showed higher accuracy in RF than in ANN algorithm. The RMSE of the RF and ANN algorithms was 2.8 mm/day and 2.9 mm/day, and the values were calculated as 0.68 and 0.73.

Assessing the Suitability of Satellite Precipitation Products for Flood Modeling in the Tonle Sap Lake Basin, Cambodia

  • Oudom Satia Huong;Xuan-Hien Le;Giha Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.176-176
    • /
    • 2023
  • The Tonle Sap is the richest and diverseness of freshwater ecosystem in Southeast Asia, receiving nurturing water flows from the Mekong and its immediate basin. In addition, the rapid development in the Tonle Sap Lake (TSL) Basin, and flood inundation may threaten the natural diversities and characteristics. The impacts of flood inundation in 11 sub-basins contributing to the Tonle Sap Lake were assessed using the Rainfall-Runoff-Inundation (RRI) model to quantify the potential magnitude and extent of the flooding. The RRI model is set up by using gauged rainfall data to simulate the information of river discharge and flood inundation of huge possible flood events. Moreover, two satellite precipitation products (SPPs), CHIRPS and GSMaP, within respectively spatial resolutions of 0.05° and 0.1°, are utilized as an input for the RRI model to simulate river discharge, flood depth, and flood extent for the great TSL Basin of Cambodia. This study used statistical indicators such as NSE, PBIAS, RSR, and R2 as crucial indices to evaluate the performance of the RRI model. Therefore, the findings of this study could provide promising guidance in hydrological modeling and the significant implications for flood risk management and disaster preparedness in the region.

  • PDF

Development of Drought Vulnerability Index Using Trend Analysis (경향성 분석을 통한 가뭄취약성 지수의 개발)

  • Yang, Jeong-Seok;Park, Jin-Hyuck;Kim, Nam-Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3B
    • /
    • pp.185-192
    • /
    • 2012
  • Drought vulnerability index was developed by selecting drought-related indicators with trend test. Study areas were determined by considering the weir locations from the four major rivers restoration project in Nakdong and Geum river watersheds. Ten indicators were selected and they were categorized into three groups, water resources, precipitation pattern, and social aspects. Annual average surface water level, annual minimum surface water level, annual average groundwater level, and annual minimum groundwater level data sets were collected for water resources aspects. The number of non-rainy days, rainfall concentration ratio, and rainfall deviation were considered for precipitation pattern category. The amount of water available per capita, financial soundness for water resources, and water usage equity were related to social aspects. Mann-Kendall, Hotelling-Pabst, and Sen trend tests were performed for the ten indicator data sets and the results were scored for the drought vulnerability index. The results shows Gumi, Sangjoo, and Hapcheon weirs are relatively vulnerable to drought. The indices were relatively low for the regions in Geum river watershed compared to those in Nakdong river watershed.

Rapid Determination of Electroplating Solutions (1) -Copper from Copper Plating Solutions (각종 도금액의 신속분석법 (제 1 보))

  • 염희택
    • Journal of the Korean institute of surface engineering
    • /
    • v.1 no.1
    • /
    • pp.5-13
    • /
    • 1967
  • Up to this date, numerous methods of analysis of electropling solutions are published. Some, however, need lots of works before reaching final results, or require high technique and special instruments, and also some are unaccurate due to unclearnes of end point. Like our undevelop countries, technicians of electroplating shops are most high school graduates or under, and have not much knowledge on chemistry. Furthermore, those technicians have to control their plating solutions by themselves without having enough analytical laboratory equipment . Therefore, in this paper the simplest, besides accurate method is investigated after comparing numerous methods published. Among the methods of copper determinations from acid and alkaline copper plating baths, EDTA titration method are chosen, due to these methods are the simpest and fastest for the evaluation of metal content, without requirng any special instrument. For acid copper solutions, chelate titrations were accurate enough. Since the end point of titration of chelate method is variable according to the kind of indicators and other metal's coexisitence as well as solution component, many difficulties were encountered from cyanide copper, on the contrary of acid copper bath. PAN , PV, and MX indicators were tried , but it is found that MX is the best. In chyanide solution ,due to cyanide is the masking reagent , elimination of this component is essential , and finally found that elimination CN-by precipitation with AgNO$_3$ solution was the simplest and the most accurate way among others. This method was very accurate for the new plating solutions even coexistence with organic brightners. However used solutions for long months running have to be predetermined the accurate copper value by thiosulfate method form time to time, before chelate titration by means of AgNO$_3$ precipitation. Always some constant deviations will be seen according to the solutions nature. Therefore those deviation values have to be compensated each time.

  • PDF

연구논문 초록(1967~1978)

  • 한국표면공학회
    • Journal of the Korean institute of surface engineering
    • /
    • v.16 no.4
    • /
    • pp.199-214
    • /
    • 1983
  • Up to this date, numerous methods of analysis of electroplating solutions are published. Some, however, need lots of works before reaching final results, or require high technique and special instruments, and also some are unaccurate due to unclearnes of end point. Like our undevelope countries, technicians of electoplating shops are most high school gradutes or under, and have not much knowledge on chemistry. Furthermore, those technicians have to control their plating solutions by themselves without having enough analytical laboratory equiIJment. Therefore, in this paper the simplest, besides accurate method is investigated after comparing nu.merous methods published. Among the methods of 'copper determinations from acid and alkaline copper plating baths, EDT A titration method are chosen, due to these methods are the simplest and fastest for the evaluation of metal content, without requiring any special instrument. For acid copper solutions, chelate titrations were accurate enough. Since the end point of titration of chelate method is variable according to the kind of .indicators androther metal's coexsistence as well as solution comIJonent, many difficulties were encountered from cyanide' copper, on the contrary of acid copper bath. PAN, PV, and MX indicators were tried, but it is found that MX is the best. In cyanide solution, due to cyanide is the masking reagent, elimination of this component is essential, and finally found that elimination eN- by precipitation with AgN03 solution was the simplest and the most accurate way among others. This method was very accurate for the new plating solutions even coexistence with organic brightners. However used solutions for long months running have to be predetermined the accurate copper value by thiosulfate method from time to time, before chelate titration by means of AgN03 precipitation. Always some constant deviatioJ;ls will be seen according to the solutions nature. Therefore those deviation values have to be compensated each time.

  • PDF

Comparative Study on Rainfall Characteristic at World Cities for Evaluation of Flood Risk (정량적 수해위험도 평가를 위한 세계 주요도시 강우특성의 비교연구)

  • Park, Min-Kyu;Park, Moo-Jong;Shin, Sang-Young;Yoo, Chul-Sang
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.175-182
    • /
    • 2011
  • The desire for living without hazardous damages grows these days, the city strategy to make the safer community has become an issue. The global assessment for the flood index require the process considering different climate of the world cities. In this study, the actual rainfall observations of the world's major cities were collected. To compare different rainfall characteristics, we calculated some indicators such as frequency factor etc using the probable maximum precipitation. Using the results of these indicators, major cities in Korea show greater variability in the rainfall characteristics when compared to other major cities in the world. These results are expected to be useful for the development of global flood risk assessment as well as the setting the direction for future flood prevention measures.

Use of various drought indices to analysis drought characteristics under climate change in the Doam watershed

  • Sayed Shajahan Sadiqi;Eun-Mi Hong;Won-Ho Nam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.178-178
    • /
    • 2023
  • Drought and flooding have historically coexisted in Korea, occurring at different times and with varying cycles and trends. The drought indicators measured were (PDSI), (SPI), and (SPEI) in order to statistically analyze the annual or periodic drought occurrence and objectively evaluate statistical characteristics such as the periodicity, tendency, and frequency of occurrence of droughts in the Doam watershed. To compute potential evapotranspiration (PET), both Thornthwaite (Thor) and Penman-Monteith (PM) parameterizations were considered, and the differences between the two PET estimators were analyzed. Hence, SPIs 3 and SPIs 6 revealed a tendency to worsen drought in the spring and winter and a tendency to alleviate drought in the summer in the study area. The seasonal variability trend did not occur in the SPIs 12 and PDSI, as it did in the drought index over a short period. As a result of the drought trend study, the drought from winter to spring gets more severe, in addition to the duration of the drought, although the periodicity of the recurrence of the drought ranged from 3 years to 6 years at the longest, indicating that SPIs 3 showed a brief time of around 1 year. SPIs 6 and SPIs 12 had a term of 4 to 6 years, and PDSI had a period of roughly 6 years. Based on the indicators of the PDSI, SPI, and SPEI, the drought severity increases under climate change conditions with the decrease in precipitation and increased water demand as a consequence of the temperature increase. Therefore, our findings show that national and practical measures are needed for both winter and spring droughts, which happen every year, as well as large-scale and extreme droughts, which happen every six years.

  • PDF

Comparison of Precipitation Characteristics using Rainfall Indicators Between North and South Korea (강수지표를 이용한 남·북한 강수특성 비교)

  • Lee, Bo-Ram;Chung, Eun-Sung;Kim, Tae-Woong;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2223-2235
    • /
    • 2013
  • This study aimed to understand temporal and spatial trends of rainfall characteristics in South and North Korea. Daily rainfall observed at the 65 stations in South Korea between 1963 and 2010 and the 27 stations in North Korea between 1973 and 2010 were analyzed. Rainfall Indicators for amount, extremes, frequency of rainfall were defined. Province-based indicators in the recent 10 years (i.e., between 2001 and 2010) were compared to those in the past (i.e., between 1963/1973 and 2000 for South/North Korea). In the recent 10 years, all the indicators except for the number of wet days (NWD) and 200-yr frequency rainfall (Freq200) increased in South Korea and all the indicators except for the annual mean daily rainfall over wet days (SDII) and annual total rainfall amount (TotalDR) decreased in North Korea. Furthermore, we performed the Mann-Kendall trend test based on the annual indicators. In some stations, decreasing trends in the past and increasing trends in the recent 10 years were found, and such opposite trends between two periods suggest he limitation in predicting and analyzing the rainfall characteristics based on the average. Results from this study can be used in analyzing the impact of climate change and preparing adaptation strategies for the water resources management.