• 제목/요약/키워드: preceding vehicle

검색결과 78건 처리시간 0.021초

고속도로 주행 시 선행차량의 전방 긴급 장애물 회피에 따른 Car-to-Car Cut-out 시나리오 기반 AES 성능평가 방법 연구 (A Study on AES Performance Assessment Protocol based on Car-to-car cut-out Scenario According to front Emergency Obstacle Avoidance of Preceding Vehicle during Highway Driving)

  • 김진석;이동훈
    • 자동차안전학회지
    • /
    • 제14권4호
    • /
    • pp.84-90
    • /
    • 2022
  • With the popularization of autonomous driving technology, safety has emerged as a more important criterion. However, there are no assessment protocol or methods for AES (Autonomous Emergency Steering). So, this study proposes AES assessment protocol and scenario corresponding to collision avoidance Car-to-Car scenario of Euro NCAP in order to prepare for obstacles that appear after the emergency steering of LV (Leading Vehicle) avoiding obstacles in front of. Autoware-based autonomous driving stack is developed to test and simulate scenario in CARLA. Using developed stack, it is confirmed that obstacle avoidance is successfully performed in CARLA, and the AES performance of VUT (Vehicle Under Test) is evaluated by applying the proposed assessment protocol and scenario.

소형궤도차량 시스템에서 속도 프로파일 추종을 위한 제어시스템 구축에 관한 연구 (A Study on a Construction of Control System for the Tracking of a Speed Profile in the Personal Rapid Transit System)

  • 이준호;류상환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.1069-1070
    • /
    • 2006
  • This study is concerned with the control system design using Labview Simulation Interface Toolkit and Matlab/simulink combined system for an application to the personal rapid transit system which has very short headway, requiring accurate speed control to avoid the impact between the vehicles. A simple equation of motion for a vehicle which is activated on the linear motor is introduced. A speed profile that should be tracked by a rear vehicle is produced based on the state information of the two vehicles(the preceding vehicle and the rear vehicle). The speed profile tracking control system is designed by Matlab/simulink. The simulation results show that the proposed control system is effective to evaluate the speed tracking performance.

  • PDF

스테레오 비전센서를 이용한 선행차량 감지 시스템의 개발 (Development of a Vision Sensor-based Vehicle Detection System)

  • 황준연;홍대건;허건수
    • 한국자동차공학회논문집
    • /
    • 제16권6호
    • /
    • pp.134-140
    • /
    • 2008
  • Preceding vehicle detection is a crucial issue for driver assistance system as well as for autonomous vehicle guidance function and it has to be performed with high reliability to avoid any potential collision. The vision-based preceded vehicle detection systems are regarded promising for this purpose because they require little infrastructure on a highway. However, the feasibility of these systems in passenger car requires accurate and robust sensing performance. In this paper, an preceded vehicle detection system is developed using stereo vision sensors. This system utilizes feature matching, epipoplar constraint and feature aggregation in order to robustly detect the initial corresponding pairs. After the initial detection, the system executes the tracking algorithm for the preceded vehicles including a leading vehicle. Then, the position parameters of the preceded vehicles or leading vehicles can be obtained. The proposed preceded vehicle detection system is implemented on a passenger car and its performances is verified experimentally.

자율주행 자동차의 제어권 전환 시간 확보를 위한 차간 통신 기반 종방향 제어 알고리즘 개발 (Development of a Longitudinal Control Algorithm based on V2V Communication for Ensuring Takeover Time of Autonomous Vehicle)

  • 이혜원;송태준;윤영민;오광석;이경수
    • 자동차안전학회지
    • /
    • 제12권1호
    • /
    • pp.15-25
    • /
    • 2020
  • This paper presents a longitudinal control algorithm for ensuring takeover time of autonomous vehicle using V2V communication. In the autonomous driving of more than level 3, autonomous systems should control the vehicles by itself partially. However if the driver's intervention is required for functional safety, the driver should take over the control reasonably. Autonomous driving system has to be designed so that drivers can take over the control from autonomous vehicle reasonably for driving safety. In this study, control algorithm considering takeover time has been developed based on computation method of takeover time. Takeover time is analysed by conditions of longitudinal velocity of preceding vehicle in time-velocity plane. In addition, desired clearance is derived based on takeover time. The performance evaluation of the proposed algorithm in this study was conducted using 3D vehicle model with actual driving data in Matlab/Simulink environment. The results of the performance evaluation show that the longitudinal control algorithm can control while securing takeover time reasonably.

타이어-노면 마찰계수 추정을 이용한 AEBS 알고리즘 (AEBS Algorithm with Tire-Road Friction Coefficient Estimation)

  • 한승재;이태영;이경수
    • 자동차안전학회지
    • /
    • 제5권2호
    • /
    • pp.17-23
    • /
    • 2013
  • This paper describes an algorithm for Advanced Emergency Braking(AEB) with tire-road friction coefficient estimation. The AEB is a system to avoid a collision or mitigate a collision impact by decelerating the car automatically when forward collision is imminent. Typical AEB system is operated by Time-to-collision(TTC), which considers only relative velocity and clearance from control vehicle to preceding vehicle. AEB operation by TTC has a limit that tire-road friction coefficient is not considered. In this paper, Tire-road friction coefficient is also considered to achieve more safe operation of AEB. Interacting Multiple Model method(IMM) is used for Tire-road friction coefficient estimation. The AEB algorithm consists of friction coefficient estimator and upper level controller and lower level controller. The numerical simulation has been conducted to demonstrate the control performance of the proposed AEB algorithm. The simulation study has been conducted with a closed-loop driver-controller-vehicle system using using MATLAB-Simulink software and CarSim Vehicle model.

자율주행 차량의 다 차선 환경 내 차량 추종 경로 계획 (Car-following Motion Planning for Autonomous Vehicles in Multi-lane Environments)

  • 서장필;이경수
    • 자동차안전학회지
    • /
    • 제11권3호
    • /
    • pp.30-36
    • /
    • 2019
  • This paper suggests a car-following algorithm for urban environment, with multiple target candidates. Until now, advanced driver assistant systems (ADASs) and self-driving technologies have been researched to cope with diverse possible scenarios. Among them, car-following driving has been formed the groundwork of autonomous vehicle for its integrity and flexibility to other modes such as smart cruise system (SCC) and platooning. Although the field has a rich history, most researches has been focused on the shape of target trajectory, such as the order of interpolated polynomial, in simple single-lane situation. However, to introduce the car-following mode in urban environment, realistic situation should be reflected: multi-lane road, target's unstable driving tendency, obstacles. Therefore, the suggested car-following system includes both in-lane preceding vehicle and other factors such as side-lane targets. The algorithm is comprised of three parts: path candidate generation and optimal trajectory selection. In the first part, initial guesses of desired paths are calculated as polynomial function connecting host vehicle's state and vicinal vehicle's predicted future states. In the second part, final target trajectory is selected using quadratic cost function reflecting safeness, control input efficiency, and initial objective such as velocity. Finally, adjusted path and control input are calculated using model predictive control (MPC). The suggested algorithm's performance is verified using off-line simulation using Matlab; the results shows reasonable car-following motion planning.

자율주행 안전성 평가 시나리오 개발 및 검증 (Development and Validation of Safety Performance Evaluation Scenarios of Autonomous Vehicle)

  • 채흥석;정용환;이명수;신재곤;이경수
    • 자동차안전학회지
    • /
    • 제9권1호
    • /
    • pp.6-12
    • /
    • 2017
  • Regulation for the testing and operation of automated vehicles on public roadways has been recently developed all over the world. For example, the licensing standards and the evaluation technology for automated vehicles have been proposed in California, Nevada and EU. But specific safety evaluation scenarios for automated vehicles have not been proposed yet. This paper presents safety evaluation scenarios for extraordinary service permission of automated vehicles on highways. A total of seven scenarios are selected in consideration of safety priority and real traffic situation. Six scenarios are relevant with lane keeping and one scenario is relevant with lane change. All scenarios are developed based on existing ADAS evaluation scenarios and repeated simulation of automated vehicle algorithm. Safety evaluation factors as well as scenarios are developed. The safety factors are based on existing ADAS ISO requirements, ADAS safety factors and current traffic regulations. For the scenarios, a hunter vehicle is needed in addition to automated vehicle evaluated. The hunter vehicle performs multiple roles like preceding vehicle, cut-in vehicle and so on. The hunter vehicle is also automated vehicle equipped with high performance GPS, radar and Lidar. All the scenarios can be implemented by driving a lap on a KATRI ITS test track. These scenarios and safety evaluation factors are investigated via both a computer simulation and an experimental vehicle test on the test track. The experimental vehicle test was conducted with two automated vehicles, which are the evaluated vehicle and the hunter vehicle.

지게차 구조진동 특성분석을 통한 운전자승차감 개선기법 연구 (Study on Riding Quality Improvement of a Forklift Truck through Structural Vibration Analysis)

  • 나덕주;김재환;최석배;김낙인
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.542-545
    • /
    • 2004
  • The vibration reduction process for the driver comfort of a forklift truck is studied in this study since the related driver comfort is a primary design target in the vehicle design recently. However, the underlying study for a vibration analysis regarding to the driver comfort is still an element stage. Thus, a preceding large work has to be needed to apply the CAE technology for the detail vehicle design, and it prevents the vehicle optimal design. To reduce the proceeding large works, the evaluated process and required data are comply with the accumulated trouble shooting experiences in this study. Since the driver comfort is a human related problem, the human vibration index associated with analysis vibration result is additionally introduced as a driver comfort judgement value.

  • PDF

DRIVER BEHAVIOR WITH ADAPTIVE CRUISE CONTROL

  • Cho, J.H.;Nam, H.K.;Lee, W.S.
    • International Journal of Automotive Technology
    • /
    • 제7권5호
    • /
    • pp.603-608
    • /
    • 2006
  • As an important and relatively easy to implement technology for realizing Intelligent Transportation Systems(ITS), Adaptive Cruise Control(ACC) automatically adjusts vehicle speed and distance to a preceding vehicle, thus enhancing driver comfort and safety. One of the key issues associated with ACC development is usability and user acceptance. Control parameters in ACC should be optimized in such a way that the system does not conflict with driving behavior of the driver and further that the driver feels comfortable with ACC. A driving simulator is a comprehensive research tool that can be applied to various human factor studies and vehicle system development in a safe and controlled environment. This study investigated driving behavior with ACC for drivers with different driving styles using the driving simulator. The ACC simulation system was implemented on the simulator and its performance was evaluated first. The Driving Style Questionnaire(DSQ) was used to classify the driving styles of the drivers in the simulator experiment. The experiment results show that, when driving with ACC, preferred headway-time was 1.5 seconds regardless of the driving styles, implying consistency in driving speed and safe distance. However, the lane keeping ability reduced, showing the larger deviation in vehicle lateral position and larger head and eye movement. It is suggested that integration of ACC and lateral control can enhance driver safety and comfort even further.

동력성능 향상을 위한 차량용 자동 변속기의 최적 변속비 및 변속 패턴 결정에 관한 연구 (A study on the determination of gear ratios and shifting pattern of automatic transmission for increasing vehicle performance)

  • 조선휘;류길하;김태용
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1436-1445
    • /
    • 1990
  • 본 연구에서는 차량의 가속성능, 일정시간후 도달거리, 추월 가속성능 등의 동력성능 향상과 차량 요구성능을 고려한 최적 감속비의 결정을 고찰하였다. 변속비 결정의 선행 연구로서 정해진 차량 제원, 엔진 성능과 정해진 변속기에 대하여 차량의 동력성능을 예측, 평가하는 연구의 수행이 요구된다. 이를 위하여 본 논문에서는 기 존의 차량에 대하여 동력 성능을 평가하는 시뮬레이션 프로그램을 개발하여 실차의 제 작과 시험에 앞서 그 동력 성능을 예측, 평가하고 또한 이를 바탕으로 최적 설계기법 에 의하여 엔진 특성을 고려한 변속기의 최적 감속비 및 변속패턴을 결정하는데 촛점 을 두었다.