• Title/Summary/Keyword: precast structure

Search Result 246, Processing Time 0.023 seconds

Modelling headed stud shear connectors of steel-concrete pushout tests with PCHCS and concrete topping

  • Lucas Mognon Santiago Prates;Felipe Piana Vendramell Ferreira;Alexandre Rossi;Carlos Humberto Martins
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.451-469
    • /
    • 2023
  • The use of precast hollow-core slabs (PCHCS) in civil construction has been increasing due to the speed of execution and reduction in the weight of flooring systems. However, in the literature there are no studies that present a finite element model (FEM) to predict the load-slip relationship behavior of pushout tests, considering headed stud shear connector and PCHCS placed at the upper flange of the downstand steel profile. Thus, the present paper aims to develop a FEM, which is based on tests to fill this gap. For this task, geometrical non-linear analyses are carried out in the ABAQUS software. The FEM is calibrated by sensitivity analyses, considering different types of analysis, the friction coefficient at the steel-concrete interface, as well as the constitutive model of the headed stud shear connector. Subsequently, a parametric study is performed to assess the influence of the number of connector lines, type of filling and height of the PCHCS. The results are compared with analytical models that predict the headed stud resistance. In total, 158 finite element models are processed. It was concluded that the dynamic implicit analysis (quasi-static) showed better convergence of the equilibrium trajectory when compared to the static analysis, such as arc-length method. The friction coefficient value of 0.5 was indicated to predict the load-slip relationship behavior of all models investigated. The headed stud shear connector rupture was verified for the constitutive model capable of representing the fracture in the stress-strain relationship. Regarding the number of connector lines, there was an average increase of 108% in the resistance of the structure for models with two lines of connectors compared to the use of only one. The type of filling of the hollow core slab that presented the best results was the partial filling. Finally, the greater the height of the PCHCS, the greater the resistance of the headed stud.

An Experimental Study on the Application of Fireproof Panel in Tunnel Duct Slab (터널 풍도슬라브에 사용된 내화패널의 적용성에 관한 실험연구)

  • Woo Jin Choi
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.262-269
    • /
    • 2023
  • Purpose: In this study,fire-resistance test were executed to evaluate the effectiveness of the fireproof panel attached to the PSC slab in tunnel. Method: For the fire resistance test, the RWS curve was applied and the furnace of the KICT was used. Result: As a result of the experiment, the maximum temperature measured on the concrete surface of the PSC slab with the fireproof panel was 321.8℃, which was lower than the damage limit temperature of 380℃ for concrete. Also, at the t=25mm, the maximum temperature was 35.2℃, which was lower than the damage temperature of steel, 250℃. The use of precast fire resistance panel(t=30mm) improves fire resistance of PSC structures. Conclusion: As a result of the test, a reinforcement method for attached a fireproof panel in case of fire in a tunnel or an underground roadway is provided to protect a structure from fire. In the future, it is necessary to perform the static performance test of the slab to which the fireproof panel is attached, and to confirm the adhesion performance of the fireproof panel by performing the pull-off test and the fatigue test.

Development of PC modular Construction System using 3D Infill (3D Infill을 활용한 PC모듈러 시공시스템 개발)

  • Chung, Joo-Soo;Lim, Seok-Ho;Heo, Byung-Wook;Chae, Ji-Yong;Park, Jin-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.14-15
    • /
    • 2020
  • The need for off-site construction has increased in the construction industry in Korea in recent years due to the enforcement of the 52-hour workweek, the increasing age of workers on construction sites, the deepening dependence on overseas workers, and the stagnation of productivity in the construction industry. Thus, studies on OSC started in April 2020. In addition, as a national policy study advocating the modular construction method, which is one of the OSC methods, was completed in the first half of 2019. 70 housing units in two complexes that satisfied the Housing Act requirements have been supplied to citizens. However, although modular construction methods have been recognized as a dramatic construction method that achieves shortened construction schedules and solves the issues of cost reduction and the shortage of technical workers on sites by combining the advantages of the manufacturing industry and applying the economies of scale, realistically it has issues due to the rising cost of steel and a low pre-fabrication ratio. Moreover, the construction time of core parts, such as those built by pouring concrete, has become a factor that hinders the shortening of construction times. Thus, this study aims to propose a precast concrete(PC) modular construction system, which fuses three-dimensional infill as an interior finish material and a three-surface PC module that can acts as a structure for a construction method that is economical and can shorten construction time.

  • PDF

A Basic Study to Prepare a Watertightness Evaluation Plan for Sealant Applied to Joints Between Members of PC Structures (PC 구조물 부재간 접합부에 적용되는 실링재의 수밀성 평가방안 마련을 위한 기초적 연구)

  • Kim, Tae-Ho;Kim, Yong-Ro;Ko, Hyo-Jin;Park, Jin-Sang;Kim, Dong-Bum;Lee, Sang-Wook
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.1
    • /
    • pp.45-56
    • /
    • 2023
  • This study was conducted to examine the feasibility of preparing a durability evaluation plan in watertightness for sealant applied to a PC structure. To this end, 5 types of sealant that equally satisfy the quality standards of the relevant KS standard were selected and tested. Through this testing, it was found that 3 of the 5 types of sealant showed deterioration in watertightness and durability, such as falling off and cracking from the substrate. For the remaining two types, a visual observation showed no significant changes, but additional analysis, confirmed that there was a large difference in the stress reduction rate of the material. Therefore, based on the above results, the need for a performance review in durability between sealant was confirmed, and based on this, the validity of the durability evaluation plan that can be used in product selection was quantitatively confirmed.

Time-dependent Parametric Analyses of PSC Composite Girders for Serviceability Design (사용성 설계를 위한 PSC 합성거더교의 시간의존적 변수해석)

  • Youn, Seok-Goo;Cho, Sun-Kyu;Lee, Jong-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.823-832
    • /
    • 2006
  • To ensure the serviceability requirements of PSC composite girder bridges, it is essential to predict the stresses and deformations of the structure under service load conditions. Stresses and deformations vary continuously with time due to the effects of creep and shrinkage of concrete and relaxation of prestressing steel. The importance of these time-dependent effects is much more pronounced in precast prestressed concrete structures built in stages than in those constructed in one operation. In this paper, time-dependent analyses for PSC composite bridges using 30m standard girders have been conducted considering with the variation of the times of introducing initial prestressing forces and casting concrete. A computer program has been developed for the time-dependent analysis of simple or continuous PSC composite girders and parametric studies are conducted. Based on the numerical results, it is investigated the long-term behaviors of PSC composite girder bridges and discussed the limitations of the current codes for the prestress loss.

Experimental Study on Accelerated Carbonation Characteristics of OPC Paste for CSC-Based Low Carbon Precast Concrete Products (CSC 기반 저탄소 콘크리트 2차제품 제조를 위한 OPC 페이스트의 촉진탄산화 특성에 관한 실험적 연구)

  • Yoon, Jun-Tae;Kim, Young-Jin;Sim, Sang-Rak;Ryu, Dong-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.3
    • /
    • pp.285-295
    • /
    • 2024
  • This study investigated the impact of accelerated carbonation on Ordinary Portland Cement(OPC) paste that had undergone steam curing at 500℃·hr. Two carbonation environments were examined: atmospheric carbonation(1atm, 20% CO2) and pressurized carbonation(5atm, 99% CO2). Chemical analysis using X-ray diffraction(XRD) and Fourier-Transform Infrared spectroscopy(FT-IR) were conducted, along with physical characterization via scanning electron microscopy(SEM) and compressive strength testing. Results indicated that atmospheric carbonation with 20% CO2 concentration significantly densified the internal microstructure of the OPC paste, leading to enhanced compressive strength. Conversely, pressurized carbonation at 5atm with 99% CO2 concentration resulted in rapid densification of the surface structure, which hindered CO2 diffusion into the sample. This limited the extent of carbonation and prevented the improvement of physical properties.

Micro-silica Mixed Aqua-epoxy for Concrete Module Connection in Water : Part 2 - Structural Application and Evaluation (해상 프리캐스트 콘크리트 부유체 모듈 가접합을 위한 마이크로 실리카 혼입 수중용 에폭시 접합 성능 검토 : Part 2 - 구조 접합 성능 평가)

  • Choi, Jin-Won;You, Young-Jun;Jeong, Youn-Ju;Kwon, Seung-Jun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.29-35
    • /
    • 2015
  • Recent studies to develop Very Large Floating Structure(VLFS) has shown that the construction procedure of the structure needs to acquire precast concrete module connection system using prestressing. However, the loads occurring on water are complex combinations of various condition, so the safe and stable performance of the module joints and bonding materials are key to the success of the construction. Therefore, micro-silica mixed aqua-epoxy development was introduced in Part 1 using a bonding material developed in this study. The performance of the micro-silica mixed aqua-epoxy(MSAE) applied joint of concrete module specimens connected by prestressing tendon was evaluated to verify the usability and safety of the material. RC beam, spliced beam connected by prestressing tendon and MSAE, and continuous prestressed concrete beam were tested for their initial cracking and maximum loads as well as cracking procedure and pattern. The results showed that the MSAE can control the stress concentration effect of the shear key and the crack propagation, and the maximum load capacity of MSAE joint specimens are only 5% less than that of continuous RC specimen. The details of the study are discussed in detail in the paper.

Multiscale modeling of reinforced/prestressed concrete thin-walled structures

  • Laskar, Arghadeep;Zhong, Jianxia;Mo, Y.L.;Hsu, Thomas T.C.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.1
    • /
    • pp.69-89
    • /
    • 2009
  • Reinforced and prestressed concrete (RC and PC) thin walls are crucial to the safety and serviceability of structures subjected to shear. The shear strengths of elements in walls depend strongly on the softening of concrete struts in the principal compression direction due to the principal tension in the perpendicular direction. The past three decades have seen a rapid development of knowledge in shear of reinforced concrete structures. Various rational models have been proposed that are based on the smeared-crack concept and can satisfy Navier's three principles of mechanics of materials (i.e., stress equilibrium, strain compatibility and constitutive laws). The Cyclic Softened Membrane Model (CSMM) is one such rational model developed at the University of Houston, which is being efficiently used to predict the behavior of RC/PC structures critical in shear. CSMM for RC has already been implemented into finite element framework of OpenSees (Fenves 2005) to come up with a finite element program called Simulation of Reinforced Concrete Structures (SRCS) (Zhong 2005, Mo et al. 2008). CSMM for PC is being currently implemented into SRCS to make the program applicable to reinforced as well as prestressed concrete. The generalized program is called Simulation of Concrete Structures (SCS). In this paper, the CSMM for RC/PC in material scale is first introduced. Basically, the constitutive relationships of the materials, including uniaxial constitutive relationship of concrete, uniaxial constitutive relationships of reinforcements embedded in concrete and constitutive relationship of concrete in shear, are determined by testing RC/PC full-scale panels in a Universal Panel Tester available at the University of Houston. The formulation in element scale is then derived, including equilibrium and compatibility equations, relationship between biaxial strains and uniaxial strains, material stiffness matrix and RC plane stress element. Finally the formulated results with RC/PC plane stress elements are implemented in structure scale into a finite element program based on the framework of OpenSees to predict the structural behavior of RC/PC thin-walled structures subjected to earthquake-type loading. The accuracy of the multiscale modeling technique is validated by comparing the simulated responses of RC shear walls subjected to reversed cyclic loading and shake table excitations with test data. The response of a post tensioned precast column under reversed cyclic loads has also been simulated to check the accuracy of SCS which is currently under development. This multiscale modeling technique greatly improves the simulation capability of RC thin-walled structures available to researchers and engineers.

The Influence of Admixture of Lignosulfonic Acid Type on the Strength of Mortar (Lignosulfonic Acid계(系) 감수제(減水劑)가 모르터의 강도(强度)에 미치는 영향(影響))

  • Kim, Han Young;Kim, Seong Wan
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.1
    • /
    • pp.75-85
    • /
    • 1985
  • This study is intended to find out the influence of Lignosulfonic Acid Type Admixture on compressive, tensile, flexural strength and dispersing action of mortar, and fixation of by-product of pulp industry. 1. The more Pozzolith-84 is added, the larger flow value is. The admixture of lignosulfonic acid type adhere to cement particles and the surface potential of particles is generated. On account of the repulsion among the cement particles, they are dispersed and the mortar get workable, so the production cost of precast product is curtailed and the amount of cement is reduced in a certain workability of mortar. 2. The strength of mortar is greater than plain mortar when P/C added is 0.2 and 0.4%. As time passed the potential energy is reduced and the distance of particles which lignosulfonic acid adhered to get near according as the amount of adhesion is increased. The setting and hardening reaction of morter is occurred in close state, so the strength of mortar is increased a little. The strength of mortar is less than plain mortar when amount P/C added is 0.8%. Pozzolith-84 is mainly composed of lignosulfonic acid and lignin does not influence the hardening of mortar, therefore the remained $SO_3$, $SO_3H$ are the reason of decrease of strength. 3. There is high significance between specific gravity and compressive strength. The larger specific gravity is, the more compressive strength is increased. There is high significance between 7 day's strength and 28 day's strength. The larger compressive strength is, the more tensile and flexural strength are increased. 4. Since Pozzolith-84 is a by-product of pulp industry, by using the Pozzolith-84 admixture the concreate quality is improved. The water pollusion is reduced according to fix by-products in concrete structure.

  • PDF

PST Member Behavior Analysis Based on Three-Dimensional Finite Element Analysis According to Load Combination and Thickness of Grouting Layer (하중조합과 충전층 두께에 따른 3차원 유한요소 해석에 의한 PST 부재의 거동 분석)

  • Seo, Hyun-Su;Kim, Jin-Sup;Kwon, Min-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.53-62
    • /
    • 2018
  • Follofwing the accelerating speed-up of trains and rising demand for large-volume transfer capacity, not only in Korea, but also around the world, track structures for trains have been improving consistently. Precast concrete slab track (PST), a concrete structure track, was developed as a system that can fulfil new safety and economic requirements for railroad traffic. The purpose of this study is to provide the information required for the development and design of the system in the future, by analyzing the behavior of each structural member of the PST system. The stress distribution result for different combinations of appropriate loads according to the KRL-2012 train load and KRC code was analyzed by conducting a three-dimensional finite element analysis, while the result for different thicknesses of the grouting layer is also presented. Among the structural members, the largest stress took place on the grouting layer. The stress changed sensitively following the thickness and the combination of loads. When compared with a case of applying only a vertical KRL-2012 load, the stress increased by 3.3 times and 14.1 times on a concrete panel and HSB, respectively, from the starting load and temperature load. When the thickness of the grouting layer increased from 20 mm to 80 mm, the stress generated on the concrete panel decreased by 4%, while the stress increased by 24% on the grouting layer. As for the cracking condition, tension cracking was caused locally on the grouting layer. Such a result indicates that more attention should be paid to the flexure and tension behavior from horizontal loads rather than from vertical loads when developing PST systems. In addition, the safety of each structural member must be ensured by maintaining the thickness of the grouting layer at 40 mm or more.