• Title/Summary/Keyword: precast structure

Search Result 246, Processing Time 0.03 seconds

Structural Design of High-Rise Concrete Condominium with Wall Dampers for Vibration Control

  • Tsushi, Takumi;Ogura, Fumitaka;Uekusa, Masahiro;Kake, Satoshi;Tsuchihashi, Toru;Yasuda, Masaharu;Furuta, Takuya
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.3
    • /
    • pp.201-209
    • /
    • 2019
  • This paper presents a structural design of the "(Tentative Name) Toranomon Hills Residential Tower" which is currently under construction in Tokyo. The building is a reinforced concrete high-rise residential complex building with 54 stories above ground, 4 basement levels, and a building height of about 220 m. It is a requirement to provide the highest grade of residence in Japan, and in terms of the structural design, it is required to provide wide and comfortable spaces with high seismic performance. These requirements are satisfied by providing a total of 774 vibration control walls of two types. Also, to further improve the structural performance, steel fibers at the rate of 1.0vol% are provided in the ultra-high strength concrete used in the column members.

Experimental seismic behavior of RC special-shaped column to steel beam connections with steel jacket

  • Hao, Jiashu;Ren, Qingying;Li, Xingqian;Zhang, Xizhi;Ding, Yongjun;Zhang, Shaohua
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.101-118
    • /
    • 2022
  • The seismic performance of the reinforced concrete (RC) special-shaped column to steel beam connections with steel jacket used in the RC column to steel beam fabricated frame structures was investigated in this study. The three full-scale specimens were subjected to cyclic loading. The failure mode, ultimate bearing capacity, shear strength capacity, stiffness degradation, energy dissipation capacity, and strain distribution of the specimens were studied by varying the steel jacket thickness parameters. Test results indicate that the RC special-shaped column to steel beam connection with steel jacket is reliable and has excellent seismic performance. The hysteresis curve is full and has excellent energy dissipation capacity. The thickness of the steel jacket is an important parameter affecting the seismic performance of the proposed connections, and the shear strength capacity, ductility, and initial stiffness of the specimens improve with the increase in the thickness of the steel jacket. The calculation formula for the shear strength capacity of RC special-shaped column to steel beam connections with steel jacket is proposed on the basis of the experimental results and numerical simulation analysis. The theoretical values of the formula are in good agreement with the experimental values.

Flexural behavior and flexural capacity prediction of precast prestressed composite beams

  • Hu, Manxin;Yang, Yong;Yu, Yunlong;Xue, Yicong
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.225-238
    • /
    • 2022
  • In order to improve the cracking resistance of reinforced concrete and give full play to the advantages of prefabricated assembly structure in construction, prestressed reinforced concrete composite beam (PRCC) is proposed. Through the bending static test of seven I-shaped beam specimens, the bending failure modes and bearing capacity of PRCC and reinforced concrete composite beam are compared and analyzed, and the effects of prestress size, prestressed reinforcement layout and prestress application sequence on the flexural behavior of PRCC beams are studied. The results show that the cracking load and ultimate load of PRCC beams significantly increased after prestressing, and prestressed tendons can effectively control the crack development. With the increase of prestressing degree, the deformation resistance and bending stiffness of PRCC beams are increased. The application sequence of prestress has little influence on the mechanical properties of PRCC beams. The crack width, stiffness and normal section bearing capacity of PRCC beam are analyzed, and the calculated results are in good agreement with the experimental results.

Analysis of Structural Work Scheduling of Green Frame - Focusing on Apartment buildings - (Green Frame의 골조공사 공기 분석 연구 - 공동주택을 중심으로 -)

  • Lee, Sung-Ho;Kim, Shin-Eun;Kim, Gwang-Hee;Joo, Jin-Kyu;Kim, Sun-Kuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.3
    • /
    • pp.301-309
    • /
    • 2011
  • Apartment housings that adopt a bearing wall structure design, which account for a majority of the housing units available in Korea, are not free from structural constraints that limit the extension of their service life. The resulting need for reconstruction from the ground up requires a massive consumption of resources and energy, and triggers environmental pollution resulting from construction wastes. As a solution to such issues, the government enforces incentive schemes to promote a remodeling-friendly rahmen structure design. Green Frame, which is a novel concept of composite precast concrete structure to support rahmen structure apartment housing buildings, can address the constraints of bearing wall structure and conventional rahmen structure designs that limit the potential for remodeling projects, while reducing the term of construction. Therefore, this study aims to analyze the characteristics of Green Frame and its absolute term of construction, and compare the terms of frame work construction in apartment housing projects adopting different structural design approaches to illuminate their differences. In the end, Green Frame is found to be capable of reducing the term of construction in apartment housing projects. As the term of construction is a very critical element of a construction project, Green Frame will ultimately prove to be one of the key enablers to ensure the success of apartment housing construction projects.

Effect of the Soft Soil Layer on the Vertical Response of a Structure Excited with the Vertical Component of Earthquakes (연약지반이 수직방향 지진하중을 받는 구조물의 수직방향 반응에 미치는 영향)

  • 김용석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.113-122
    • /
    • 1999
  • The importance of the vertical response of a structure was well recognized after the Hyogoken-Nanbu earthquake of Japan. However, most of the seismic design codes does not specified the site sail profiles, and the sail and foundations conditions were mostly neglected in the vertical seismic analyses of a structure. In this paper, the effects of foundation size, sail layer depth under the foundation, foundation embedment and pile foundation on the vertical seismic response spectra for both surface and embedded mat foundation were studied to investigate the effects of the soft soil layer on the vertical response of a structure excited with the vertical components of Taft and El Centro earthquakes, considering the sail profile types of $S_A,S_C,S_E$ in UBC-97, the medium and large size foundations, the soil layer depth under the foundation of 30 and 60m, the foundation embedment of 0 and 15m, and the precast reinforced concrete bearing piles installed in the soft soil deposit. According to the study results, the foundation size has a little effect on the vertical seismic response, However, the soil layer depth under the foundation of 60m has to be considered for the vertical seismic analysis of a structure as for the horizontal one. The embedded pile foundations as well as the surface ones built on the soft soil layer amplified the vertical seismic response of a structure very much.

  • PDF

Mechanical behavior of steel-concrete composite decks with perfobond shear connectors

  • Allahyari, Hamed;Dehestani, Mehdi;Beygi, Morteza H.A.;Neya, Bahram Navayi;Rahmani, Ebrahim
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.339-358
    • /
    • 2014
  • Exodermic deck systems are new composite steel grid deck systems which have been used in various projects during the past decade. One of the eminent features of this system is considerable reduction in the structure weight compared to the ordinary reinforced concrete decks and also reduction in construction time by using precast Exodermic decks. In this study, dynamic properties of the Exodermic deck bridges with alternative perfobond shear connectors are investigated experimentally. In order to evaluate the dynamic properties of the decks, peak picking and Nyquist circle fit methods are employed. Frequencies obtained experimentally are in good agreement with the results of the finite-element solution, and the experimental results show that the first mode is the most effective mode among the obtained modes. The first four modes are the rigid translational motion modes, and the next two modes seem to be rigid rotational motion modes around a horizontal axis. From the 7th mode onwards, modes are flexible. The range of damping ratios is about 0.5%. Furthermore, the static behavior of the Exodermic decks under a static load applied at the center of the decks was investigated. Failure of the decks under positive bending was punching-shear. The bending strength of the decks under negative bending was about 50 percent of their strength under positive bending. In addition, the weight of an Exodermic deck is about 40% of that of an equivalent reinforced concrete slab.

Seismic fragility curves for a concrete bridge using structural health monitoring and digital twins

  • Rojas-Mercedes, Norberto;Erazo, Kalil;Di Sarno, Luigi
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.503-515
    • /
    • 2022
  • This paper presents the development of seismic fragility curves for a precast reinforced concrete bridge instrumented with a structural health monitoring (SHM) system. The bridge is located near an active seismic fault in the Dominican Republic (DR) and provides the only access to several local communities in the aftermath of a potential damaging earthquake; moreover, the sample bridge was designed with outdated building codes and uses structural detailing not adequate for structures in seismic regions. The bridge was instrumented with an SHM system to extract information about its state of structural integrity and estimate its seismic performance. The data obtained from the SHM system is integrated with structural models to develop a set of fragility curves to be used as a quantitative measure of the expected damage; the fragility curves provide an estimate of the probability that the structure will exceed different damage limit states as a function of an earthquake intensity measure. To obtain the fragility curves a digital twin of the bridge is developed combining a computational finite element model and the information extracted from the SHM system. The digital twin is used as a response prediction tool that minimizes modeling uncertainty, significantly improving the predicting capability of the model and the accuracy of the fragility curves. The digital twin was used to perform a nonlinear incremental dynamic analysis (IDA) with selected ground motions that are consistent with the seismic fault and site characteristics. The fragility curves show that for the maximum expected acceleration (with a 2% probability of exceedance in 50 years) the structure has a 62% probability of undergoing extensive damage. This is the first study presenting fragility curves for civil infrastructure in the DR and the proposed methodology can be extended to other structures to support disaster mitigation and post-disaster decision-making strategies.

Evaluation of the Pull-out Resistance of the SMA Wire Connector (SMA 와이어를 이용한 연결재의 인발저항성능 평가)

  • Jung, Chi-Young;Woo, Tae-Ryeon;Lee, Jong-Han;Cheung, Jin-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.130-137
    • /
    • 2019
  • Precast concrete (PC) structure is one of the type of the structures which is made in a facility prior to installing it to a construction field. The contact surfaces between two PC structures should be treated for obtaining enough binding force by inducing prestressing force. However, in the many cases, the contact surface causes the crack and leakage of water. These cracks and water leakage can cause the corrosion of the rebar, and the corrosion of the rebar can severely reduce the long-term durability. In this study, the SMA wire connector is suggested to solve the problem with the contact surfaces between two PC structures. The pull-out resistance of the suggested SMA wire connector is evaluated by conducting the tests to find the effect of the number of wires, shape of connector part, and shape memory effect. As a result of this study, the empirical formula is suggested to estimate the pull-out resistance related with the effects of the shape of the connector, shape memory effect, and the adhesive force. The validity between the estimated pull-out resistance and the measured value is confirmed.

Pile-cap Connection Behavior between Hollow-Head Precast Reinforced Concrete Pile and Foundation (프리캐스트 철근콘크리트 중공 말뚝과 기초 접합부 반복가력 거동)

  • Bang, Jin-Wook;Jo, Young-Jae;Ahn, Kyung-Chul;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.71-77
    • /
    • 2019
  • Recently, most of the pile foundations have been applied as a method to transfer the heavy load of the structure to the ground with high bearing capacity. In this study, the pile-cap behavior between foundation and hollow-head precast reinforced concrete(HPC) pile reinforced with longitudinal rebar and filling concrete was experimentally evaluated depending on the cyclic load and reinforcement ratio. As the drift ratio increases, it was found that the cracks pattern and fracture behavior of two types of pile-cap specimens according to the reinforcement ratio were evaluated to be similar. As the reinforcement ratio increases by 1.77 times, the BS-H25 specimen increases the maximum load by 1.47 times compared to the BS-H19 specimen. However, the ductility ratio of positive and negative was decreased by 76% and 70% respectively. After the yielding of the pile-cap reinforcing rebars, the positive and negative stiffness of the all specimens were decreased by a range from 66% to 71% and a range from 54% to 57% respectively, and the average stiffness of BS-H25 specimen is 13% higher than that of BS-H19 specimen. The cumulative dissipated energy capacity of BS-H19 and BS-H25 specimen under ultimate load state is 5.5 times and 6.6 times higher than that of service load state.

A Study on Development of Construction Standard Production Rates and Cost Analysis for Off-Site Construction (OSC)-Based PC Structure Construction Costs - Comparison with RC Method - (OSC기반 PC구조 공사비 산정을 위한 품셈개발 및 공사비 분석 - RC공법과 비교 -)

  • Lee, Hansoo;Lee, Chiho;Han, Heesu;Lee, Jeongwook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.2
    • /
    • pp.56-68
    • /
    • 2024
  • A construction standard production rates system for the factory built and on-site installation phases of OSC (Off-Site Construction)-based precast concrete (PC) structures in apartment buildings was recently proposed to establish an objective cost standard (Lee et al., 2021). In addition, the Korean government has taken steps to improve the institutional foundation for the systematic calculation of PC construction costs such as revising construction standard production rates for major components that can be applied to the on-site installation phase of PC method. In this study, we analyzed the results of a field survey of apartment building PC structures and collected expert opinions to develop factory-built and on-site installation standard production rates that can be applied to apartment building PC method. We also propose directions for improving the standard production rates so that they can be applied to the site and component of apartment buildings by comparing them with the current standard production rates. This study also derived the cost characteristics and cost reduction measures of PC construction by calculating the construction costs using the developed rates and comparing the construction costs with the RC methods of apartment buildings of the same scale. The construction standard production rates for PC construction derived in this study are expected to contribute to the spread of PC construction by ensuring the objectivity and consistency of the results of PC methods cost estimation.