• Title/Summary/Keyword: precast concrete vertical joints

Search Result 22, Processing Time 0.031 seconds

Influence of the stiffness of Vertical Joints on the Behaviour of Precast Shear Walls. Part1. Load Case 1 (연직접합(鉛直接合)의 강성(剛性)이 프리케스트 전단벽(剪斷壁)의 구조적거동(構造的擧動)에 미치는 영향(影響) I. 하중조합(荷重組合) 1에 대하여)

  • Park, Kyung-Ho
    • Journal of Industrial Technology
    • /
    • v.3
    • /
    • pp.103-116
    • /
    • 1983
  • Recent developments in multi-storey buildings for residential purpose have led to the extensive use of shear walls for the basic structural system. When the coupled shear wall system is used, joined together with cast-in-place concrete or mortar (or grout), the function of the continuous joints is a crucial factor in determining the safety of L.P. Precast concrete shear wall structures, because the function of the continuous joints(Vertical wall to wall joints) is to transfer froces from one element(shear wall panel) to another, and if sufficient strength and ductility is not developed in the continuous joints, the available strength in the adjoining elements may not be fully utilized. In this paper, the influence of the stiffness of vertical joints(wet vertical keyed shear joints) on the behaviour of precast shear walls is theoretically investigated. To define how the stiffness of the vertical joints affect the load carrying capacity of L.P.Precast concrete shear wall structure, the L.P.Precast concrete shear wall structure is analyzed, with the stiffness of the vertical joints varying from $K=0.07kg/mm^3$(50MN/m/m) to $K=1.43kg/mm^3$(1000MN/m/m), by using the continuous connection method. The results of the analysis shows that at the low values of the vertical stiffness, i.e. from $K=0.07kg/mm^3$(50MN/m/m) to $K=0.57kg/mm^3$(400MN/m/m), the resisting bending moment and shearing force of precast shear walls, the resisting shearing force of vertical joints and connecting beams are significantly affected. The detailed results of analysis are represented in the following figures and Tables.

  • PDF

Development and Shear Performance Evaluation of Vertical Joints between Precast Concrete Walls (PC 벽체 수직접합부의 개발 및 전단성능 평가)

  • Moon, Kyo Young;Kim, Sung Jig;Lee, Kihak;Kim, Yong Nam
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.4
    • /
    • pp.81-88
    • /
    • 2022
  • The paper introduces an experimental program for the newly developed vertical joints between Precast Concrete (PC) walls to improve their in-plane shear capacity. Compared to the existing vertical joints, two types of vertical joints were developed by increasing the transverse reinforcement ratio and improving frictional force at the joint interface. A total of four specimens including the Reinforced Concrete (RC) wall and PC walls with developed vertical joints were designed and constructed. The constructed specimens were experimentally investigated through monotonic shear tests. The observed damage, load-deformation relationship, strain and strength are investigated and compared with the cases of RC wall specimen. Experimental results indicate that the maximum force and initial stiffness of the PC wall with proposed vertical joints were decreased by comparing with those of RC wall. However, the ultimate displacement increased by up to 217.30% compared to the RC wall specimen. In addition, brittle failure did not occurred and relatively few cracks and damages occurred.

A Experimental Study on the Shear Resistant Characteristics of the Large Precast Concrete Panel Structures (조립식 콘크리트 대형판구조물의 접합부 전단내력특성에 관한 실험적 고찰)

  • 송영훈;전상우;윤정배;정일영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.237-242
    • /
    • 1993
  • Precast concrete panel buildings are designed to tracsmit shear forces through the joint between the reinforced concrete panels. The shear strength is partly provided by the resistance to sliding at the interface between the precast and in- situ concrete and partly by the dowel action of the reinforcement crossing the joint. The shear resistance to sliding is largely dependent on the shapes and configurations of vertical joints and the vertical loads of horizontal joints. In this paper, the shear strength by the difference of relative strength between panel and joint, the effect of reinforcement, and the effect of vertical load are considered.

  • PDF

Stress Analysis of Precast Concrete Large Panel Structures Taking Account of Stiffness of Vertical Joints (수직접합부 강성을 고려한 프리캐스트 콘크리트 대형판구조물의 응력해석)

  • 장극관;이한선;신영식;류진호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.149-156
    • /
    • 1993
  • Precast concrete (P.C.) large panel structures have usually weaker stiffness at joints than that of monolithic in-situ reinforced concrete structures. But structural designers do not in general take into account this characteristics of P. C. large panel structures and use the same analytical models as for the monolithic structure. Therefore, the results of analysis obtained by using these models may be quite different from those actually occuring in real P.C. structure. In this study, the change in force and stress distribution and deflections of structure caused by applying lower shear stiffness at vertical joints are investigated through trying several finite element modeling schemes specific for P.C. structures. Finally, for engineers in practice. a simplified model, which takes account of the effect of lower shear stiffness at vertical joints, is proposed with the understanding on possible amount of errors.

  • PDF

Shear Strength of the Vertical Joints in Precast Concrete Large Panel Structures (대형 콘크리트 판넬구조의 수직접합부 전단강도에 관한 연구)

  • 서수연;이원호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.1
    • /
    • pp.111-119
    • /
    • 1994
  • The strength of vertical joints of precast concrete large panel structures depends on the many factors, such as the bond strength of grout concrete (or mortar), the interlocking of the shear keys, the dowel action of horizontal bars. Many experimental studies have been conducted to in vestigate the shear strength of the vertical joints. In domestic, a few design formulas to predict shear strength of the vertical joint were proposed by some investigators, but formulas were based on limited experimental results. The objective of this paper is to propose a suitable formula for the shear strength of vertical joints with 94 vertical joints experimental data using the modified Mohr-Coulomb's 4ield theory and regression analysis. From the comparison of the proposed formula with others, it is shown that the proposed formula can be used economically for the design of vertical joints.

Nonlinear Finite Element Analysis for the Precast Concrete Large Panel Subassemblage subjected to Horizontal Force (수평하중을 받는 프리캐스트 콘크리트 대형 판넬 부분구조의 비선형 해석)

  • 박병순;서수연;이원호;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.157-162
    • /
    • 1993
  • During earthquakes, the joints provide a principal means for energy dissipation, and these are also responsible for introducing a nonlinear behavior to the overall building system, while large panels remain in the elastic range. In analysis for the precast concrete large panel system, it is difficult to make a general analysis for their behavior because of differences in joint details. Therefore, in case of presence of vertical joints, it is more difficult because of the interaction between the horizontal joints and vertical joints, In this study, a nonlinear finite element analysis is performed using the gap element, friction element, and concrete material model, and the results are compared with the experimental results.

  • PDF

shear Tests on female-to-female Type Joint between Precast Concrete Bridge Decks (프리캐스트 콘크리트 교량바닥판 female-female이음부의 전단실험)

  • 김영진;김영진;김종희
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.161-168
    • /
    • 1998
  • Increase of traffic volume in recent years results in deterioration of the bridge slab, which is directly subjected ot vehicle loads. Where extensive repair is necessary, replacement or enhancement of load carrying capacity using full depth precast concrete deck is often the most practical solution. Precast deck system has transverse joints between adjacent precast decks. Vertical shear forces occur when a vehicle wheel load is carried by precast decks and the joints are used to transfer the load to an adjacent deck. Effective load transfer between precast decks is critical for integral behavior. Finite element analysis and tests were run on the proposed femal-to-female type joint. 18 joint specimens were tested to investigate the effects of angle. D/H, and confining stress under static load. Results indicate joint with angle of 60$^{\circ}$ and D/H of 1/4 shows the improved load carrying capacity on crack. It is effective in protecting the cracking of joints to keep the joint in compression using confining stress.

Shear Strength of Vertical Joints in Precast Concrete Panel with Shear Key (전단키를 갖는 프리캐스트 콘크리트 패널 수직접합부의 전단강도)

  • Lee, Sang-Sup;Park, Keum-Sung;Bae, Kyu-Woong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.151-158
    • /
    • 2019
  • A concrete core is used widely as lateral stability systems in high-rise modular buildings. As an alternative to traditional cast in-situ core, the precast concrete(PC) method can accelerate the construction of reinforced concrete cores. A core composed of precast elements differs from a in-situ core in having connections between the precast elements. The typical vertical connection between PC panels is consisted of shear keys, loop bars, lacer bars and grout. In this study, the effect of vertical connection components on shear strength is investigated experimentally. The test results show that the contribution to the shear strength is greater in order of grout strength, shear keys, lacer bars and loop bars. In addition, the numerical models to estimate the shear strength according to two crack patterns in the vertical joint of the PC panels are derived. The feasibility of the numerical models is evaluated by comparing the estimated shear strength and the test results.

Analytical Modeling of Precast Concrete Large Panel Structures Taking Account of Stiffness of Vertical Joints (수직접합부 강성을 고려한 프리캐스트 콘크리트 대형판구조물의 해석모델)

  • 이한선;장극관;신영식
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.105-113
    • /
    • 1994
  • Precast concrete(P.C.) large panel structures have usually weaker stiffness at joints than that of monolithic in-situ reinforced concrete structures. But structural designers do not in general take into account this characteristics of P.C. large panel structures and use the same analytical models as for the monolithic structure. Therefore, the results of analysis obtained by using these models may be quite different from those actually occurring in real P.C. structure. In this study, the change in force and stress distribution and deflections of structure caused by applying lower shear stiffness at vertical joints are investigated through trying several finite element modeling schemes specific for P.C. structures, Finally, for engineers in practice, a simplified model, which takes account of the effect of lower shear stiffness at vertical joints, is proposed with the understanding on possible amount of errors.

  • PDF

Experimental Study On shear Capacity of P.C Vertical Joints (P.C 수직접합부의 전단내력에 대한 실험연구)

  • 김원종;김상식;지호청
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.362-367
    • /
    • 1994
  • In Precast Concrete Structure, safety of structure depends on strength of joint. Asa result, there exists a necessity to review the effects of elements consisting joints, since these elements are important factors for evalaution of joint strength. However, there elements are different for construction methods and may be changed even during construction. Obviously, the change of elements can cause the change of joint strength; yet, the effects of the variables are not clearly defined. The behavior of the joints are complicated and evaluated only through experiments. Consequently, the main objective of this paper is to review effects of components consisting Precast Joints, I order to keep higher joint strength than specified in the design code.

  • PDF