• Title/Summary/Keyword: precast concrete members

Search Result 115, Processing Time 0.02 seconds

An Experimental Study on Structural Behavior of Half Slab Reinforced by Truss Mesh (트러서메쉬 보강 하프 슬래브의 구조적 거동에 관한 실험적 연구)

  • Ko, Man-Young;Kim, Yong-Boo;Park, Hyun-Soo;Chung, Lan
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.4
    • /
    • pp.119-128
    • /
    • 1995
  • This paper summarizes experimental results for studying feasibility and structural behavior of' a half slab which is getting popularity in recent building construction in favour of the savings in manpower, coats, and construction period. 17 specimens were tested to investigate and analyze the flexural strength of precast concrete slab, half slab, and half slab-wall joint. The primary variables of the testing program were: thickness of precast concrete slab, truss mesh shape, and type of loadings. Test results show that the flexural strength of precast concrete slab in reverse loading is lower than the design strength, but the flexural strength of precast concrete slab, half slab and half slab-wall joint in direct loading is higher than the design srength. No horizontal cracks were found in the connection between insitu concrete and precast concrete slab. The flexural strength of half slab and half slab-wall joint was the same as that of reinforced concrete members. This study concludes that there will not be any structural problem in using a half slab reinforced by truss mesh if props spacing of 2.0m-2.5m, cleanness, and rough finishing between precast concrete and insitu concrete slab are kept.

Estimation of production length of PC beam by using splice length of bottom rebar (하부철근 이음길이에 따른 PC 보 제작 길이 산정)

  • Sung, Soojin;Lim, Chaeyeon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.84-85
    • /
    • 2014
  • Green frame is column-beam structure composed of precast concrete members. Based on Revision of Structural Concrete Design Code, the bottom rebar of beam shall be extend at least 150mm into the support member. However, if the bottom rebar extend to satisfy Revision of Structural Concrete Design Code, the installation fo beam is impossible due to interference between the columns and beams. Thus, the aim of this study is estimation of production length of precast concrete beam by using splice length of bottom rebar. In this study to solve this problem, lap splice were used on the join. This study was calculated length of the reinforcement by the diameter. According to the length of the rebar, the production length of beam concrete was calculated. The results of this study will satisfy the Revision of Structural Concrete Design Code about column-beam connection when green frame will be applied.

  • PDF

Experimental and numerical studies of precast connection under progressive collapse scenario

  • Joshi, Digesh D.;Patel, Paresh V.;Rangwala, Husain M.;Patoliya, Bhautik G.
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.235-248
    • /
    • 2020
  • Progressive collapse in a structure occurs when load bearing members are failed and the adjoining structural elements cannot resist the redistributed forces and fails subsequently, that leads to complete collapse of structure. Recently, construction using precast concrete technology is adopted increasingly because it offers many advantages like faster construction, less requirement of skilled labours at site, reduced formwork and scaffolding, massive production with reduced amount of construction waste, better quality and better surface finishing as compared to conventional reinforced concrete construction. Connections are the critical elements for any precast structure, because in past, major collapse of precast structure took place because of connection failure. In this study, behavior of four different precast wet connections with U shaped reinforcement bars provided at different locations is evaluated. Reduced 1/3rd scale precast beam column assemblies having two span beam and three columns with removed middle column are constructed and examined by performing experiments. The response of precast connections is compared with monolithic connection, under column removal scenario. The connection region of test specimens are filled by cast-in-place micro concrete with and without polypropylene fibers. Performance of specimen is evaluated on the basis of ultimate load carrying capacity, maximum deflection at the location of removed middle column, crack formation and failure propagation. Further, Finite element (FE) analysis is carried out for validation of experimental studies and understanding the performance of structural components. Monolithic and precast beam column assemblies are modeled using non-linear Finite Element (FE) analysis based software ABAQUS. Actual experimental conditions are simulated using appropriate boundary and loading conditions. Finite Element simulation results in terms of load versus deflection are compared with that of experimental study. The nonlinear FE analysis results shows good agreement with experimental results.

A new precast wall connection subjected to monotonic loading

  • Vaghei, Ramin;Hejazi, Farzad;Taheri, Hafez;Jaafar, Mohd Saleh;Ali, Abang Abdullah Abang
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.1-27
    • /
    • 2016
  • Final construction project cost is significantly determined by construction rate. The Industrialized Building System (IBS) was promoted to enhance the importance of prefabrication technology rather than conventional methods in construction. Ensuring the stability of a building constructed by using IBS is a challenging issue. Accordingly, the connections in a prefabricated building have a basic, natural, and essential role in providing the best continuity among the members of the building. Deficiencies of conventional precast connections were observed when precast buildings experience a large induced load, such as earthquakes and other disasters. Thus, researchers aim to determine the behavior of precast concrete structure with a specific type of connection. To clarify this problem, this study investigates the capacity behavior of precast concrete panel connections for industrial buildings with a new type of precast wall-to-wall connection (i.e., U-shaped steel channel connection). This capacity behavior is compared with the capacity behavior of precast concrete panel connections for industrial buildings that used a common approach (i.e., loop connection), which is subjected to monotonic loading as in-plane and out-of-plane loading by developing a finite element model. The principal stress distribution, deformation of concrete panels and welded wire mesh (BRC) reinforcements, plastic strain trend in the concrete panels and connections, and crack propagations are investigated for the aforementioned connection. Pushover analysis revealed that loop connections have significant defects in terms of strength for in-plane and out-of-plane loads at three translational degrees of freedom compared with the U-shaped steel channel connection.

Causes of local collapse of a precast industrial roof after a fire

  • Bruno Dal Lago;Paride Tucci
    • Computers and Concrete
    • /
    • v.31 no.5
    • /
    • pp.371-384
    • /
    • 2023
  • Precast roofing systems employing prestressed elements often serve as smart structural solutions for the construction of industrial buildings. The precast concrete elements usually employed are highly engineered, and often consist in thin-walled members, characterised by a complex behaviour in fire. The present study was carried out after a fire event damaged a precast industrial building made with prestressed beam and roof elements, and non-prestressed curved barrel vault elements interposed in between the spaced roof elements. As a consequence of the exposure to the fire, the main elements were found standing, although some locally damaged and distorted, and the local collapse of few curved barrel vault elements was observed in one edge row only. In order to understand and interpret the observed structural performance of the roof system under fire, a full fire safety engineering process was carried out according to the following steps: (a) realistic temperature-time curves acting on the structural elements were simulated through computational fluid dynamics, (b) temperature distribution within the concrete elements was obtained with non-linear thermal analysis in variable regime, (c) strength and deformation of the concrete elements were checked with non-linear thermal-mechanical analysis. The analysis of the results allowed to identify the causes of the local collapses occurred, attributable to the distortion caused by temperature to the elements causing loss of support in early fire stage rather than to the material strength reduction due to the progressive exposure of the elements to fire. Finally, practical hints are provided to avoid such a phenomenon to occur when designing similar structures.

Design and Experimental Evaluations of Non-Uniform Precast Ultra High-Strength Concrete Beams (비정형 프리캐스트 초고강도 콘크리트 보의 설계 및 실험 평가)

  • Kim, Hoyeon;Cho, Chang-Geun;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.99-108
    • /
    • 2018
  • This paper presents the design, analysis, and experimental evaluations of precast reinforced UHPC (ultra high-performance concrete) beams with a new design concept of non-uniform flexural members. With outstanding mechanical properties of UHPC which can develop the compressive strength up to 200MPa, the tensile strengths up to 8~20MPa and the tensile strain up to 1~5%, a non-uniform structural shape of UHPC flexural beams were optimally designed using three-dimensional finite element analysis. The experiments were carried out and compared with the design strength in order to verify the performance of them. Proposed non-uniform UHPC beams were evaluated by a series of three-point beam loading test as well as estimated by design bending and shear strength of members. The newly designed UHPC beams show excellent performances not only in transverse load capacities but also in deformation capacities.

The effect of combined carbonation and steam curing on the microstructural evolution and mechanical properties of Portland cement concrete

  • Kim, Seonhyeok;Amr, Issam T.;Fadhel, Bandar A.;Bamagain, Rami A.;Hunaidy, Ali S.;Park, Solmoi;Seo, Joonho;Lee, H.K.
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.367-374
    • /
    • 2021
  • The present study investigated the effect of the combined carbonation and steam curing on the physicochemical properties and CO2 uptake of the Portland cement concrete. Four different curing regimes were adopted during the initial 10 h of curing to evaluate the potential of carbonation curing as an alternative to conventional steam curing in the precast concrete industry from environmental and practical viewpoints. Four combinations of carbonation and steam curing conditions were applied as curing regimes to the samples at an early age. The test results indicated that the samples treated with the combined carbonation and steam curing exhibited higher early strength development compared to the other samples, signifying that carbonation curing can reduce the production time of precast concrete. Furthermore, the CO2 uptake capacity of the samples was calculated and found to be as high as 18% with respect to the mass of the paste samples. Hence, the simultaneous utilization of steam and CO2 for the fabrication of precast concrete members has the potential to make precast concrete greener and more cost-effective.

Chemically Prestressed Precast Concrete Box Culvert with Expansive Additives

  • Park, Hong-Yong;Kim, Chul-Young;Park, Ik-Chang;Bae, Sang-Wook;Ryu, Jong-Hyun
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.43-51
    • /
    • 2001
  • Although portland cement concrete is one of the most universal construction materials, it has some disadvantage such as shrinkage, which is an inherent characteristic. Because of this shrinkage, combined with the low tensile strength of the material, cracks of varying sizes can be found in every reinforced concrete. To prevent this cracking, keeping the concrete in compression by mechanical prestress has been used. This study discusses application of expansive additives for concrete to improve the serviceability of precast concrete box culvert by inducing chemical prestress. For this purpose, both expansive concrete slabs and normal concrete slabs are tested to verify the effect of expansive additives. Then the failure tests of the fullscale precast box culverts were carried out and the critical aspects of the structural behavior were investigated. The result of the material testis shows that the optimal proportion of expansive additives is 13 percent of cement weight, and the properties of expansive concrete are the same as those of normal concrete in that proportion. Both the experimental cracking load and service load of the expansive concrete members are increased in comparison with those of the normal concrete, but the ultimate load is decreased slightly. In addition to the above results, the deformation of expansive concrete member is lets than that of normal concrete member, and permanent strain which results from cyclic load is decreased. It can be concluded that the use of expansive additives to induce chemical prestress in precast concrete box culvert greatly improves the serviceability.

  • PDF

Erection Capability of Heavy Precast Frames with Metal Plates using Wet Concrete for Tolerance (톨러런스기반 플레이트 접합 장치를 사용한 고중량 RC보의 설치 성능)

  • Hong, Won-Kee;Nguyen, Van Tien;Nguyen, Manh Cuong;Nkundimana, Eric
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.12-13
    • /
    • 2021
  • Methods for the manufacture, erection, and assembly of heavy frame modules were proposed. Interferences among precast members were prevented by using bolted metal plates for dry precast beam-to-column joints during assembly with a clearance for tolerance implementing grouted concrete filler plates instead of metal filler plates. Clearances for tolerances were provided to avoid conflictions among components during erection phases. These gaps were, then, grouted by high-strength mortar. The constructability of new connections of a beam-to-column joint using bolted metal plates for precast structures was examined using a full-scale assembly test in which practical observations indicated that members could be aligned and placed accurately in both horizontal and vertical directions, leading to a fast and convenient assembling. Bolt holes of the endplate were properly aligned using couplers with 30 mm fastened length embedded in the columns. The assembly test demonstrated the erection safety and structural stability of the proposed joints that were without filler plates when they were subjected to heavy loads at the time of their erection. The facile and rapid assembly of precast beam-to-column connections with a 30 mm tolerance was observed. The proposed assembly method is rapid, sustainable, and resilient, replacing the conventional methods of concrete frame construction, offering a connection that can be used in constructing infrastructure, such as buildings and pipe-rack frames.

  • PDF