• Title/Summary/Keyword: pre-processing step

Search Result 140, Processing Time 0.025 seconds

Defect Detection algorithm of TFT-LCD Polarizing Film using the Probability Density Function based on Cluster Characteristic (TFT-LCD 영상에서 결함 군집도 특성 기반의 확률밀도함수를 이용한 결함 검출 알고리즘)

  • Gu, Eunhye;Park, Kil-Houm
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.3
    • /
    • pp.633-641
    • /
    • 2016
  • Automatic defect inspection system is composed of the step in the pre-processing, defect candidate detection, and classification. Polarizing films containing various defects should be minimized over-detection for classifying defect blobs. In this paper, we propose a defect detection algorithm using a skewness of histogram for minimizing over-detection. In order to detect up defects with similar to background pixel, we are used the characteristics of the local region. And the real defect pixels are distinguished from the noise using the probability density function. Experimental results demonstrated the minimized over-detection by utilizing the artificial images and real polarizing film images.

GIS DETECTION AND ANALYSIS TECHNIQUE FOR ENVIRONMENTAL CHANGE

  • Suh, Yong-Cheol;Choi, Chul-Uong;Kim, Ji-Yong;Kim, Tae-Woo
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.163-168
    • /
    • 2008
  • KOMPSAT-3 is expected to provide data with 80-cm spatial resolution, which can be used to detect environmental change and create thematic maps such as land-use and land-cover maps. However, to analyze environmental change, change-detection technologies that use multi-resolution and high-resolution satellite images simultaneously must be developed and linked to each other. This paper describes a GIS-based strategy and methodology for revealing global and local environmental change. In the pre-processing step, we performed geometric correction using satellite, auxiliary, and training data and created a new classification system. We also describe the available technology for connecting global and local change-detection analysis.

  • PDF

Noise Robust Document Image Binarization using Text Region Detection and Down Sampli (문자 영역 검출과 다운샘플링을 이용한 잡음에 강인한 문서 영상 이진화)

  • Jeong, Jinwook;Jun, Kyungkoo
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.7
    • /
    • pp.843-852
    • /
    • 2015
  • Binarization of document images is a critical pre-processing step required for character recognition. Even though various research efforts have been devoted, the quality of binarization results largely depends on the noise amount and condition of images. We propose a new binarization method that combines Maximally Stable External Region(MSER) with down-sampling. Particularly, we propose to apply different threshold values for character regions, which turns out to be effective in reducing noise. Through a set of experiments on test images, we confirmed that the proposed method was superior to existing methods in reducing noise, while the increase of execution time is limited.

A PRICING METHOD OF HYBRID DLS WITH GPGPU

  • YOON, YEOCHANG;KIM, YONSIK;BAE, HYEONG-OHK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.277-293
    • /
    • 2016
  • We develop an efficient numerical method for pricing the Derivative Linked Securities (DLS). The payoff structure of the hybrid DLS consists with a standard 2-Star step-down type ELS and the range accrual product which depends on the number of days in the coupon period that the index stay within the pre-determined range. We assume that the 2-dimensional Geometric Brownian Motion (GBM) as the model of two equities and a no-arbitrage interest model (One-factor Hull and White interest rate model) as a model for the interest rate. In this study, we employ the Monte Carlo simulation method with the Compute Unified Device Architecture (CUDA) parallel computing as the General Purpose computing on Graphic Processing Unit (GPGPU) technology for fast and efficient numerical valuation of DLS. Comparing the Monte Carlo method with single CPU computation or MPI implementation, the result of Monte Carlo simulation with CUDA parallel computing produces higher performance.

Inter-view Balanced Disparity Estimation for Mutiview Video Coding (다시점 영상에서 시점간 균형을 맞추는 변이 추정 알고리듬)

  • Yoon, Jae-Won;Kim, Yong-Tae;Sohn, Kwang-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.435-436
    • /
    • 2006
  • When working with multi-view images, imbalances between multi-view images occur a serious problem in multi-view video coding because they decrease the performance of disparity estimation. To overcome this problem, we propose inter-view balanced disparity estimation for multi-view video coding. In general, the imbalance problem can be solved by a preprocessing step that transforms reference images linearly. However, there are some problems in pre-processing such as the transformation of the original images. In order to obtain a balancing effect among the views, we perform block-based disparity estimation, which includes several balancing parameters.

  • PDF

JND based Video Pre-processing Adaptive to Quantization Step sizes for Perceptual Redundancy Reduction (시각적 인지 중복성 제거를 위해 양자화 크기값에 적응적인 최소 인지 왜곡 기반 전처리 방법)

  • Ki, Sehwan;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.11a
    • /
    • pp.100-102
    • /
    • 2016
  • 본 논문에서는 기존의 인지 영상 부호화에 사용되던 Just Noticeable Distortion(JND) 보다 더 압축에 적합한 모델인 Just Noticeable Quantization Distortion(JNQD) 모델을 제시하고, 이를 사용한 인지적 영상 압축 방법을 제안한다. 제안하는 인지적 영상 압축 방식은 영상 코덱 내부의 Rate-Distortion Optimization(RDO)을 수정하지 않고 입력되는 영상의 불필요한 정보들을 미리 제거하는 전처리 과정으로서, JNQD 모델을 사용하여 보다 간단하면서 압축 효율을 크게 증가 시킬 수 있다. 기존 영상 압축의 전처리 방법들은 부호화기의 양자화 값을 전처리 과정에서 고려하지 못하여 부정확한 인지 중복성 제거 결과를 초래하였으나, 제안하는 방법은 영상의 특성뿐만 아니라 양자화 크기 값을 고려하여 적응적으로 인지 왜곡이 발생하지 않는 주관적 인지 중복성 제거를 전처리 과정에서 수행할 수 있다. 거의 유사한 주관적 품질 수준을 유지하면서 HEVC 참조 소프트웨어 대비 약 15%의 압축효율 향상을 보인다.

  • PDF

ModifiedFAST: A New Optimal Feature Subset Selection Algorithm

  • Nagpal, Arpita;Gaur, Deepti
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.113-122
    • /
    • 2015
  • Feature subset selection is as a pre-processing step in learning algorithms. In this paper, we propose an efficient algorithm, ModifiedFAST, for feature subset selection. This algorithm is suitable for text datasets, and uses the concept of information gain to remove irrelevant and redundant features. A new optimal value of the threshold for symmetric uncertainty, used to identify relevant features, is found. The thresholds used by previous feature selection algorithms such as FAST, Relief, and CFS were not optimal. It has been proven that the threshold value greatly affects the percentage of selected features and the classification accuracy. A new performance unified metric that combines accuracy and the number of features selected has been proposed and applied in the proposed algorithm. It was experimentally shown that the percentage of selected features obtained by the proposed algorithm was lower than that obtained using existing algorithms in most of the datasets. The effectiveness of our algorithm on the optimal threshold was statistically validated with other algorithms.

U2Net-based Single-pixel Imaging Salient Object Detection

  • Zhang, Leihong;Shen, Zimin;Lin, Weihong;Zhang, Dawei
    • Current Optics and Photonics
    • /
    • v.6 no.5
    • /
    • pp.463-472
    • /
    • 2022
  • At certain wavelengths, single-pixel imaging is considered to be a solution that can achieve high quality imaging and also reduce costs. However, achieving imaging of complex scenes is an overhead-intensive process for single-pixel imaging systems, so low efficiency and high consumption are the biggest obstacles to their practical application. Improving efficiency to reduce overhead is the solution to this problem. Salient object detection is usually used as a pre-processing step in computer vision tasks, mimicking human functions in complex natural scenes, to reduce overhead and improve efficiency by focusing on regions with a large amount of information. Therefore, in this paper, we explore the implementation of salient object detection based on single-pixel imaging after a single pixel, and propose a scheme to reconstruct images based on Fourier bases and use U2Net models for salient object detection.

COMS Geometric Calibration System and Its In-Orbit Functional and Performance Tests (천리안위성 기하보정 시스템의 궤도상 시험)

  • Jin, Kyoung-Wook;Seo, Seok-Bae;Kim, Han-Dol;Ju, Gwang-Hyeok;Yang, Koon-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.495-506
    • /
    • 2011
  • COMS In-Orbit Tests(IOT), performed from July, 2010 to Jan, 2011, were successfully completed and the scientific data from MI and GOCI has been distributed officially from April, 2011. This paper focuses on the geometric calibration system tests conducted during the IOT. The geometric calibration process, which is one of the primary objectives of the IOT is the final step of COMS data pre-processing. The basic principles of the geometric calibration (or image navigation and registration, INR) algorithm for COMS are described and the functional and performance tests of COMS INR system were summarized according to the COMS IOT phases. Final performance testes were carried out using data sets acquired from the real-time COMS data pre-processing system. Geometric calibration accuracy of the COMS data showed excellent quality and met requirement specifications.

Transformer Network for Container's BIC-code Recognition (컨테이너 BIC-code 인식을 위한 Transformer Network)

  • Kwon, HeeJoo;Kang, HyunSoo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.1
    • /
    • pp.19-26
    • /
    • 2022
  • This paper presents a pre-processing method to facilitate the container's BIC-code recognition. We propose a network that can find ROI(Region Of Interests) containing a BIC-code region and estimate a homography matrix for warping. Taking the structure of STN(Spatial Transformer Networks), the proposed network consists of next 3 steps, ROI detection, homography matrix estimation, and warping using the homography estimated in the previous step. It contributes to improving the accuracy of BIC-code recognition by estimating ROI and matrix using the proposed network and correcting perspective distortion of ROI using the estimated matrix. For performance evaluation, five evaluators evaluated the output image as a perfect score of 5 and received an average of 4.25 points, and when visually checked, 224 out of 312 photos are accurately and perfectly corrected, containing ROI.