이 논문은 다중반송파 직접수열 코드분할 다중접속 (MC-DS/CDMA) 시스템 환경에서 성능향상을 위한 병렬형 간섭제거시스템 (Parallel Interference Canceller: PIC)을 소개한다. 기존의 병렬형 간섭제거 방식은 다중접속간섭을 원하는 신호에서 동시에 제거하는 기법으로 처리시간이 매우 빠르지만, 원하는 성능을 얻기 위해서 다단으로 시스템을 구성해야만 한다. 기존 방식의 성능은 정확한 간섭추정과 매우 밀접한 관계가 있으므로, 우리는 원하는 신호보다 작은 간섭신호 그룹을 좀 더 정확하게 추정하여 성능을 개선시킨 간섭제거 방식을 소개한다. 제안된 수신기의 동작원리는 수신된 신호를 크기에 따라 내림차순 정렬을 하고, 작은 신호들을 정확하게 추정하기 위하여 원하는 신호에서 큰 간섭신호를 제거한다. 다음으로 전 단계에서 개선된 작은 간섭신호들을 원하는 신호에서 제거한다. 이 결과, 큰 신호들의 정확성이 보장되므로 제안 방식은 기존의 병렬형 간섭제거 시스템보다 전반적인 비트 에러율 (Bit Error Ratio)성능이 향상된다. 단점으로 전력 정렬과 간섭추정 단계가 요구되므로 기존시스템보다 처리시간이 조금 지연된다. 성능은 한정된 대역 내에서 부반송파의 증가에 따라 다른 비선형 간섭제거 시스템과 비교 분석하였다.
본 연구는 자유선택놀이 활동에서 유아의 또래관계 탐색을 위한 위치데이터의 활용 방안을 탐색하는 것을 목적으로 한다. 이를 위해 충남 소재 유아교육기관 1개 학급, 14명을 대상으로 웨어러블 디바이스를 활용하여 위치데이터를 수집했다. 수집한 위치데이터의 전처리를 위해 스무딩 기법을 적용하여 수집 과정에서 발생한 결측치를 복구하고 파이썬의 Matplotlib를 활용해 데이터를 시각화했다. 이후 수식을 활용하여 위치데이터에서 이동거리, 유아 간 거리, 유아의 상호작용 유형을 추출했다. 연구결과 시간의 흐름에 따른 1) 이동거리의 변화와 누적값 및 평균값, 2) 유아간 거리 변화와 평균 거리값 3) 상호작용 유형의 변화와 경향성을 도출할 수 있었다. 정보통신기술의 발달은 교육현장에 많은 변화를 야기하고 있으며 특히 최근 교육 현장에서는 학습자의 특성, 요구를 중심으로 다양한 교수-학습적 처방을 통한 맞춤형 교육에 대한 수요가 높아지고 있다. 이러한 연구결과는 교사가 모든 유아를 세밀하게 관찰하기 어려운 상황에서 유아들의 또래집단 형성 과정에 대한 정보를 제공할 수 있으며 이에 따른 교육 프로그램의 설계 및 운영에 유의미한 정보로 활용될 수 있다.
빅데이터 플랫폼에서, 연관 룰 마이닝 응용프로그램은 여러 가치를 창출할 수 있다. 예를 들어, 농업 빅데이터 플랫폼에서 농가 소득을 높일 수 있는 농작물들을 농업인들에게 추천할 수 있다. 이 연관 룰 마이닝의 주요 절차는 빈발 아이템셋 마이닝으로, 이는 동시에 나타나는 아이템의 셋을 찾는 작업이다. Apriori를 비롯한 이전 연구에서는 대규모의 가능한 아이템 셋에 의한 메모리 오버로드의 이유로 만족할 만한 성능을 보일 수 없었다. 이를 개선하고자, 아이템 셋을 작은 크기로 분할하여 순차적으로 계산하도록 하는 SON 알고리즘이 제안되었다. 하지만, 단일 머신에서 SON 알고리즘을 돌릴 경우 많은 시간이 소요된다. 이 논문에서는 하둡기반의 빅데이터 플랫폼에서 SON 알고리즘 병렬처리 방식을 이용한 연관룰 탐색 기법을 소개한다. 연관 룰 마이닝을 위한 전처리, SON 알고리즘 기반 빈발 아이템셋 마이닝, 그리고 연관룰 검출 절차를 Hadoop기반의 빅데이터 플랫폼에 구현하였다. 실제 데이터를 활용한 실험을 통해 제안된 연관 룰 마이닝 기법은 Brute Force 기법의 성능을 압도하는 것을 확인하였다.
상수도분야 인공지능 기술개발 관심도가 증가함에 따라 상수도 관로에 대해서 노후관 상태평가 데이터 결과를 활용하여 반복적인 학습으로 개량 의사결정 등급을 예측할 수 있는 인공신경망 알고리즘을 개발하고 검증과정을 통하여 가장 신뢰성 있는 예측 모델을 제시하고자 한다. 2020년 한강유역의 노후관로 정비 기본계획에 의한 간접평가 데이터 12개 항목을 기반으로 데이터 전처리 하고 인공신경망 알고리즘을 적용하여 반복학습과 검증을 통해 계산된 결과값과 직접평가 결과값의 일치율이 90% 이상이 되도록 역전파 과정을 통해 가중치를 업데이트 하면서 최적화하여 관로 등급을 예측하는 알고리즘을 개발하였다. 알고리즘 정확도 검증결과 모든 관종 데이터가 고르게 분포되어 있고 학습 데이터가 많아야 예측평가 정확도가 높아지는 것을 확인할 수 있었다. 향후 전국의 다양한 데이터가 확보되면 인공신경망을 이용한 관로등급 예측의 신뢰도가 좀 더 향상되어 객관화된 노후관 상태평가 의사결정 지원 역할을 수행할 수 있을 것으로 기대된다.
본 연구논문에서는 LSTM 기반의 학습 모델 적용과 그 효용성을 높일 수 있도록 몇 가지 평활 기법을 비교, 적용하고자 한다. 적용된 평활 기법은 Savitky-Golay, 지수 평활법, 가중치 이동 평균 등이다. 본 연구를 통해 비트코인 데이터에 LSTM모델 적용 시 보여준 결과 값보다 전처리 과정에서 적용된 Savitky-Golay 필터가 적용된 LSTM 알고리즘이 예측 성능에 유의미한 좋은 결과를 보였다. 예측 성능 결과를 확인하기 위해 비트코인 가격 예측에 따른 복잡 요인을 제거하는데 사용된 LSTM의 경우와 Savitzky-Golay LSTM 모델에 따른 학습 손실율과 검증 손실율을 비교하고 그 신뢰성을 높일 수 있도록 20회 평균값으로 실험하였다. 그 결과 (3.0556, 0.00005), (1.4659, 0.00002)의 값을 얻을 수 있었다. 결과적으로는 비트코인과 같은 암호화폐가 주식보다 더한 변동성을 가지는 만큼 데이터 전처리 과정에서 평활 기법(Savitzky-Golay)을 적용하여 잡음(Noise)을 제거하였으며, 전처리 후의 데이터는 LSTM 신경망 학습을 통해서 비트코인 예측률을 높이는데 가장 유의미한 결과를 얻을 수 있었다.
본 연구는 BERT 기반 자연어처리 모델들을 미세 조정하여 한국어 리뷰 데이터를 대상으로 감성 분석을 수행하는 방법을 제안한다. 이 과정에서 입력 시퀀스 길이에 변화를 주어 그 성능을 비교 분석함으로써 입력 시퀀스 길이에 따른 최적의 성능을 탐구하고자 한다. 이를 위해 의류 쇼핑 플랫폼 M사에서 수집한 텍스트 리뷰 데이터를 활용한다. 웹 스크래핑을 통해 리뷰 데이터를 수집하고, 데이터 전처리 단계에서는 긍정 및 부정 만족도 점수 라벨을 재조정하여 분석의 정확성을 높였다. 구체적으로, GPT-4 API를 활용하여 리뷰 텍스트의 실제 감성을 반영한 라벨을 재설정하고, 데이터 불균형 문제를 해결하기 위해 6:4 비율로 데이터를 조정하였다. 의류 쇼핑 플랫폼에 존재하는 리뷰들을 평균적으로 약 12 토큰의 길이를 띄었으며, 이에 적합한 최적의 모델을 제공하기 위해 모델링 단계에서는 BERT기반 사전학습 모델 5가지를 활용하여 입력 시퀀스 길이와 메모리 사용량에 집중하여 성능을 비교하였다. 실험 결과, 입력 시퀀스 길이가 64일 때 대체적으로 가장 적절한 성능 및 메모리 사용량을 나타내는 경향을 띄었다. 특히, KcELECTRA 모델이 입력 시퀀스 길이 64에서 가장 최적의 성능 및 메모리 사용량을 보였으며, 이를 통해 한국어 리뷰 데이터의 감성 분석에서 92%이상의 정확도와 신뢰성을 달성할 수 있었다. 더 나아가, BERTopic을 활용하여 새로 입력되는 리뷰 데이터를 카테고리별로 분류하고, 최종 구축한 모델로 각 카테고리에 대한 감성 점수를 추출하는 한국어 리뷰 감성 분석 프로세스를 제공한다.
로우푸수하식 양식굴의 가공적성에 관한 실험을 하여 다음과 같은 결과를 얻었다. 1. 굴의 각내부피에 대한 연체부의 무게 또는 각내 부피에 대한 연체부의 부피의 측정값으로서 비만도를 측정하는 지표로 이용할 수 있다. 2. 육류분의 월별변화를 보면 수분과 지방은 대체로 역상관관계가 됐고, 단백질은 4월부터 약간감소하기 시작하여 7월에 급격히 감소하였다가 8월에 다시 급격하게 증가하나 9월부터 다시 점차 감소하는 경향을 나타내었다. 글리코겐은 4월부터 급격하게 감소하기 시작하여, $6\~8$월에 최저값을 나타내고, 9월부터 다시 증가하였다. pH는 $6.0\~6.2$로서 시간적으로 큰 변화는 찾아 볼 수 없이 거의 일정하였다. 회분은 $6\~8$월에 약간 감소하는 경향이 있었다. 3. 비만도 및 육성분 분석결과로써 가공적성을 판정한다면 가공원료 채취적기는 12월말에서 다음에 5월까지라고 보아진다. 4. 중금속함량의 시기적변화범위를 보면 수은은 $0\~0.019ppm$, 카드뮴은 $0.026\~0.053ppm $, 구리는 $0.111\~0.594ppm$ 남은 $0.061\~0.581ppm로 $로서 가공원료로 안전하다고 볼 수 있다. 5. 생굴을 냉동하기 전에 플리인산나트륨을 $10\%$ 함유한 $5\%$ 식염수에 침지처리한 것은 해동시에 drip 유출방지핵과가 있었다. 6. $ Na_2EDTA$또는 BHA용액에서 침지처리하는 전처리 조작만으로서는 굴 보일드통조림의 황변을 방지할 수 없었다. 7. $2\%$염화마구네슘 용액은 살아 있는 굴의 개각활동을 촉진하는 효과가 있었다.
$CO_2$ 지중저장은 국가 온실가스 감축 목표 달성에 가장 큰 역할을 담당할 것으로 평가되고 있으나, 포집분야 일부 기술을 제외하고 저장 및 실증에 대한 국내 연구는 여전히 부족한 실정이다. CCS(Carbon Capture and Storage)의 가장 큰 목표는 지하 퇴적 암반층에 $CO_2$를 안전하게 저장하는 것이며, 이를 위해서는 저장소의 저장용량 및 안정성등과 같은 지중저장 대상지층의 특성을 정확하게 파악하고 그에 맞는 주입 전략을 수립하여야 한다. 이번 연구에서는 한국석유공사가 2012년에 울릉분지에서 취득한 탄성파 탐사자료를 활용하여 $CO_2$ 저장 후보 지층에 대한 탄성파 임피던스 역산을 수행하고, 공극률의 분포와 지층의 속성을 도출하여 $CO_2$ 지중저장 가능성을 검토하였다. 우선, 탄성파 자료 역산의 신뢰도를 높이기 위해 다양한 방법의 잡음제거 기법을 적용하였고, 특히 본 자료의 주파수 및 위상 특성을 그대로 유지한 채 다중반사파를 제거할 수 있는 SWD(Shallow Water Demultiple), SRME(Surface Related Multiple Elimination), Radon Demultiple 기술을 활용하였다. 자료 역산을 위해 3개의 시추공에 대한 물리검층 자료를 분석하였는데, 탄성파 자료와의 상관도가 각각 0.648, 0.574, 0.342로 나타났으며 이는 초기 역산 모델 설정을 위한 저주파수 모델 생성에 활용하였다. 중합 전 역산을 통해 P-임피던스, S-임피던스 및 Vp/Vs 비 값을 도출하였으며, 이와 물리검층 결과의 비교, 분석을 통해 공극률 분포 양상을 확인함으로써 지중저장에 적합한 지층을 파악할 수 있었다. 향후 $CO_2$ 주입 실증을 위해서는 지층에 대한 보다 세밀한 특성 분석과 모사를 통한 주입 이후 $CO_2$ 거동예측이 필요할 것이다.
시장 예측은 일정 기간 동안 소비자에게 판매되는 동종 제품 또는 서비스의 수량 혹은 매출액의 규모를 추정하는 활동으로 정의할 수 있다. 정확한 시장 예측은 기업의 입장에서 새로운 제품의 도입시기 결정, 제품 설계, 생산계획 수립, 마케팅 전략 수립 등에 활용됨으로써 경영활동에 있어 효율적인 의사결정을 내릴 수 있게 하고, 정부의 입장에서는 발전 가능성이 있는 분야에 국가예산을 더 배분할 수 있는 효율적인 예산수립이 가능하게 한다. 본 연구는 정보통신기술(Information and Communication Technology: ICT) 분야의 제품 및 서비스에 대해서 과거의 시계열 자료를 이용하여 시장 성장곡선을 도출하고, 성장패턴이 비슷한 그룹으로 분류하여, 산업 내 시장에 대해 이해하고, 제품들의 미래 전망을 예측하는 데 목적이 있다. 다양한 아이템들을 통일되고 일관적인 방법으로 예측하기 위하여, 로지스틱 모형, 곰페르츠 모형, Bass 모형의 세 가지 전통적인 성장모형과 로지스틱 모형이나 곰페르츠 모형에서 도출되는 잠재시장 크기를 Bass 모형에 결합시킨 두 가지 하이브리드 성장모형을 개발하여 비교 분석하였다. 데이터 설명력이 우수한 로지스틱 + Bass 모형을 최적의 모형으로 선정하여 ICT 제품 및 서비스들 각각의 시장 성장곡선 모수를 확인하였다. 도출된 모수를 데이터로 하여, 자기조직화 지도 알고리즘을 통해, 5개의 의미 있는 영역으로 구분된 시장 성장패턴 지도가 구축되었는데, 각 영역별로 차별화된 특징과 성장패턴을 가지고 있었다. 본 연구에서 제안한 프로세스 및 시스템은 산업 시장 분석 시스템의 수요 예측 기능으로 활용될 수 있으며, ICT 산업뿐만 아니라 다양한 산업 및 분야에도 적용 가능할 것으로 기대된다.
본 연구는 수학과와 과학과를 중심으로 데이터 시각화 역량 범주 관점에서 2022 개정 교육과정의 성취기준 및 성취기준 해설을 분석하여 그 특징을 과목과 학년군별로 알아보는 데 목적이 있다. 연구를 실행하기 위해 선행연구들을 조사하였으며, 연구자들은 수집 및 전처리 역량, 기술 역량, 사고 역량, 상호작용 역량이라는 4개의 데이터 시각화 역량 범주를 중심으로 데이터 시각화의 핵심 역량 범주를 정리하였다. 이를 바탕으로 데이터 시각화 관점에서 성취기준을 분석하기 위한 틀을 제작하였으며, 이를 활용하여 2022 개정 교육과정(교육부 고시 제2022-33호, 별책 8과 9)의 문서를 검토 및 분석하였다. 수학과 성취기준 및 성취기준 해설 191개와 과학과 성취기준 및 성취기준 해설 230개를 분석하여 데이터 시각화 역량과 관련된 요인을 추출하고 정리하였다. 정리된 요인들을 학습 기간을 고려하여 표준화한 후, 히트맵을 활용하여 시각화하고 정성적으로 분석하였으며, Mann-Whitney의 U 검정과 독립표본 Kruskal-Wallis 검정을 통해 정량적으로 분석하였다. 분석 결과, 수학과의 경우 학년군별로 유의미한 차이가 나타나지 않았으며, 성취기준별로는 사고 역량이 기술 역량(p=.002) 및 상호작용 역량(p=.001)에 비해 유의미하게 낮은 것으로 나타났다. 또한 학년군이 올라갈수록 기술 역량과 상호작용 역량으로 수렴하는 경향을 보였다. 과학과의 경우, 학년이 올라갈수록 더 많은 성취기준을 다룬다는 것을 확인할 수 있었으며(대응별 비교, 5~6학년군 대 7~9학년군 p=.001; 5~6학년군 대 10학년군 p=.029; 3~4학년군 대 7~9학년군 p=.022), 성취기준별로는 사고 역량이 다른 모든 역량에 비해 유의미하게 낮은 것(대응별 비교, 기술 역량 p=.024; 수집 및 전처리 역량 p=.012; 상호작용 역량 p=.010)으로 나타났다. 또한 학년군이 올라갈수록 사고 역량을 제외한 나머지 역량으로 수렴하는 경향이 있었다. 이를 통해 첫째, 데이터 시각화 역량은 교육과정에서 4개의 데이터 시각화 역량 범주로 분류할 수 있으며, 둘째, 수학 및 과학 과목의 데이터 시각화 역량은 학년군이 올라갈수록 특정 역량으로 수렴되는 경향을 보이며, 셋째, 데이터 시각화 역량 중 사고 역량은 비교적 비중이 적게 다루어진다는 것을 확인할 수 있었다. 이와 같은 결론을 바탕으로 2022 개정 교육과정에서 데이터 시각화 역량에 대한 시사점을 제언하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.