In this paper, various time series analysis models and machine learning models are presented for long-term prediction of export growth rate, and the prediction performance is compared and reviewed by RMSE and MAE. Export growth rate is one of the major economic indicators to evaluate the economic status. And It is also used to predict economic forecast. The export growth rate may have a negative (-) value as well as a positive (+) value. Therefore, Instead of using the ReLU function, which is often used for time series prediction of deep learning models, the PReLU function, which can have a negative (-) value as an output value, was used as the activation function of deep learning models. The time series prediction performance of each model for three types of data was compared and reviewed. The forecast data of long-term prediction of export growth rate was deduced by three forecast methods such as a fixed forecast method, a recursive forecast method and a rolling forecast method. As a result of the forecast, the traditional time series analysis model, ARDL, showed excellent performance, but as the time period of learning data increases, the performance of machine learning models including LSTM was relatively improved.
This paper describes methodology verifying near-surface predictability of numerical weather prediction models against the surface synoptic weather station network (SYNOP) observation. As verification variables, temperature, wind, humidity-related variables, total cloud cover, and surface pressure are included in this tool. Quality controlled SYNOP observation through the pre-processing for data assimilation is used. To consider the difference of topographic height between observation and model grid points, vertical inter/extrapolation is applied for temperature, humidity, and surface pressure verification. This verification algorithm is applied for verifying medium-range forecasts by a global forecasting model developed by Korea Institute of Atmospheric Prediction Systems to measure the near-surface predictability of the model and to evaluate the capability of the developed verification tool. It is found that the verification of near-surface prediction against SYNOP observation shows consistency with verification of upper atmosphere against global radiosonde observation, suggesting reliability of those data and demonstrating importance of verification against in-situ measurement as well. Although verifying modeled total cloud cover with observation might have limitation due to the different definition between the model and observation, it is also capable to diagnose the relative bias of model predictability such as a regional reliability and diurnal evolution of the bias.
Kim, Hong-Soog;Jang, Woo-Hyuk;Lee, Sung-Doke;Han, Dong-Soo
Proceedings of the Korean Society for Bioinformatics Conference
/
2004.11a
/
pp.86-100
/
2004
계산을 통한 단백질 상호작용 예측 기법의 중요성이 제기되면서 많은 단백질 상호 작용 예측 기법이 제안되고 있다. 하지만 이러한 기법들이 일반 사용자가 손쉽게 사용할 수 있는 서비스 형태로 제공되고 있는 경우는 드물다. 본 논문에서는 현재까지 알려진 단백질 상호작용 예측 기법 중 예측 기법의 완성도가 높고 상대적으로 예측 정확도가 높은 것으로 알려진 도메인 조합 기반 단백질 상호 작용 예측 기법을 PreSPI(Prediction System for Protein Interaction)라는 서비스 시스템으로 설계하고 구현하였다. 구현된 시스템이 제공하는 기능은 크게 도메인 조합 기반 단백질 상호 작용 예측 기법을 서비스 형태로 만들어 제공하는 기능으로 입력 단백질 쌍에 대한 상호작용 예측이 중심이 된 핵심기능과, 핵심 기능으로부터 파생되는 기능인 부가 기능, 그리고 주어진 단백질에 대한 도메인 정보검색 기능과 같이 단백질 상호작용에 관하여 연구하는 연구자에게 도움이 되는 일반적인 기능으로 구성되어 있다. 계산을 통해 단백질 상호 작용을 예측하는 시스템은 대규모계산이 요구되는 경우가 많아 좋은 성능을 갖추는 것이 중요하다. 본 논문에서 구현된 PreSPI 시스템은 서비스에 따라 적절히 그 처리를 병렬화 함으로써 시스템의 성능 향상을 도모하였고, PreSPI 가 제공하는 기능을 웹 서비스 API 로 Deploy 하여 시스템의 개방성을 지원하고 있다. 또한 인터넷 환경에서 변화되는 단백질 상호 작용 및 도메인에 관한 정보를 유연하게 반영할 수 있도록 시스템을 계층 구조로 설계하였다. 본 논문에서는 PreSPI 가 제공하는 몇 가지 대표적인 서비스에 관하여 사용자 인터페이스를 중심으로 상술함으로써 초기 PreSPI 사용자가 PreSPI 가 제공하는 서비스를 이해하고 사용하는 데에도 도움이 되도록 하였다.있어서 자각증상, 타각소견(他覺所見)과 함께 이상(異常)은 확인되지 않았으며 부작용도 없었다. 이상의 결과로부터, ‘펩타이드 음료’는 경증고혈압 혹은 경계역고혈압자(境界域高血壓者)의 혈압을, 자각증상 및 혈액${\cdot}$뇨검사에도 전혀 영향을 미치지 않고 저하시킨다고 결론지었다.이병엽을 염색하여 흰가루 병균의 균사생장과 포자형성 등을 관찰한 결과 균사가 용균되는 것을 볼 수 있었으며, 균사의 용균정도와 분생포자형성 억제 정도는 병 방제효과와 일치하는 경향을 보였다.을 의미한다. IV형은 가장 후기에 포획된 유체포유물이며, 광산 주변에 분포하는 석회암체 등의 변성퇴적암류로부터 $CO_{2}$ 성분과 다양한 성분의 유체가 공급되어 생성된 것으로 여겨진다. 정동이 발달하고 있지 않으며, 백운모를 함유하고 있는 대유페그마타이트는 변성작용에 의한 부분용융에 의해 형성된 멜트에서 결정화되었으며, 상당히 높은 압력의 환경에서 대유페그마타이트의 결정화작용 과정에서 용리한 유체의 성분이 전기석에 포획되어 있다. 이때 용리된 유체는 다양한 성분을 지니고 있었으며, 매우 낮은 공융온도와 다양한 딸결정은 포유물 내에 NaCl, KCl 이외에 적어도 $CaCl_{2},\;MgCl_{2}$와 같은 성분을 포함하고 있음을 지시한다. 유체의 용리는 적어도 $2.7{\sim}5.3$ kbar 이상의 압력과 $230{\sim}328^{\circ}C$ 이상의 온도에서 시작되었다.없었다. 결론적으로 일부 한방제와 생약제제는 육계에서 항생제를 대체하여 사용이 가능하며 특히 혈액의 성분에 유의한 영향을 미치는 것으로 사료된다. 실증연구가 필요할 것으로 사료된다.trip과 Sof-Lex disc로 얻어진 표면은 레진전색제의 사용으로 표면조도의 개선
A TSP(Tunnel Seismic Prediction) survey which is modified VSP(Vertical Seismic Profiling) survey applied in tunnel was carried out at Pyongtaek and Incheon liquefied petroleum gas(LPG) storage cavern during excavation. The TSP survey in Pyongtaek LPG storage cavern which is located below Namyangho was performed to confirm the location and orientation of the fault detected at pre-investigation stage. The TSP survey was carried out in access tunnel, construction tunnel, and watercurtain tunnel to characterize 3 dimensional figure of the fault. The results of TSP survey are compared four in vestigation boreholes drilled in shelter of access tunnel. The fault was also detected by borehole survey and the location was coincided with the result of TSP survey. Depending on the result of TSP survey and core logging, the design such as cavern layout and length was changed. Another TSP survey was performed in Incheon LPG storage cavern which is located below sea. Because of poor geological information at pre-investigation stage and suffering from heavy leakage of groundwater, the TSP survey to detect fracture zone was carried out. The support and grouting design was reflected by the result of TSP survey.
Journal of the Korean Institute of Intelligent Systems
/
v.23
no.5
/
pp.473-478
/
2013
In this paper, we develop the Heavy Rain Advisory Decision Model based on intelligent neuro-fuzzy algorithm RBFNNs by using KLAPS(Korea Local Analysis and Prediction System) Reanalysis data. the prediction ability of existing heavy rainfall forecasting systems is usually affected by the processing techniques of meteorological data. In this study, we introduce the heavy rain forecast method using the pre-processing techniques of meteorological data are in order to improve these drawbacks of conventional system. The pre-processing techniques of meteorological data are designed by using point conversion, cumulative precipitation generation, time series data processing and heavy rain warning extraction methods based on KLAPS data. Finally, the proposed system forecasts cumulative rainfall for six hours after future t(t=1,2,3) hours and offers information to determine heavy rain advisory. The essential parameters of the proposed model such as polynomial order, the number of rules, and fuzzification coefficient are optimized by means of Differential Evolution.
According to deformation features of pre-twisted bar, its elastic bending and torsion buckling equation is developed in the paper. The equation indicates that the bending buckling deformations in two main bending directions are coupled with each other, bending and twist buckling deformations are coupled with each other as well. However, for pre-twisted bar with dual-axis symmetry cross-section, bending buckling deformations are independent to the twist buckling deformation. The research indicates that the elastic torsion buckling load is not related to the pre-twisted angle, and equals to the torsion buckling load of the straight bar. Finite element analysis to pre-twisted bar with different pre-twisted angle is performed, the prediction shows that the assumption of a plane elastic bending buckling deformation curve proposed in previous literature (Shadnam and Abbasnia 2002) may not be accurate, and the curve deviates more from a plane with increasing of the pre-twisting angle. Finally, the parameters analysis is carried out to obtain the relationships between elastic bending buckling critical capacity, the effect of different pre-twisted angles and bending rigidity ratios are studied. The numerical results show that the existence of the pre-twisted angle leads to "resistance" effect of the stronger axis on buckling deformation, and enhances the elastic bending buckling critical capacity. It is noted that the "resistance" is getting stronger and the elastic buckling capacity is higher as the cross section bending rigidity ratio increases.
Korean Journal of Agricultural and Forest Meteorology
/
v.22
no.4
/
pp.239-249
/
2020
Rice flour varieties have been developed to replace wheat, and consumption of rice flour has been encouraged. damage related to pre-harvest sprouting was occurring due to a weather disaster during the ripening period. Thus, it is necessary to develop pre-harvest sprouting rate prediction system to minimize damage for pre-harvest sprouting. Rice cultivation experiments from 20 17 to 20 19 were conducted with three rice flour varieties at six regions in Gangwon-do, Chungcheongbuk-do, and Gyeongsangbuk-do. Survey components were the heading date and pre-harvest sprouting at the harvest date. The weather data were collected daily mean temperature, relative humidity, and rainfall using Automated Synoptic Observing System (ASOS) with the same region name. Gradient Boosting Machine (GBM) which is a machine learning model, was used to predict the pre-harvest sprouting rate, and the training input variables were mean temperature, relative humidity, and total rainfall. Also, the experiment for the period from days after the heading date (DAH) to the subsequent period (DA2H) was conducted to establish the period related to pre-harvest sprouting. The data were divided into training-set and vali-set for calibration of period related to pre-harvest sprouting, and test-set for validation. The result for training-set and vali-set showed the highest score for a period of 22 DAH and 24 DA2H. The result for test-set tended to overpredict pre-harvest sprouting rate on a section smaller than 3.0 %. However, the result showed a high prediction performance (R2=0.76). Therefore, it is expected that the pre-harvest sprouting rate could be able to easily predict with weather components for a specific period using machine learning.
A modified k-$\epsilon$ model is proposed for calculation of transitional boundary layer flows. In order to develop the eddy viscosity model for the problem, the flow is divided into three regions; namely, pre-transition region, transition region and fully turbulent region. The pre-transition eddy-viscosity is formulated by extending the mixing Length concept. In the transition region, the eddy-viscosity model employs two length scales, i.e., pre-transition length scale and turbulent length scale pertaining to the regions upstream and the downstream, respectively, and a university model of stream-wise intermittency variation is used as a function bridging the pre-transition region and the fully turbulent region. The proposed model is applied to calculate three benchmark cases of the transitional boundary layer flows with different free-stream turbulent intensity ( $1\%{\~}6\%$ ) under zero-pressure gradient. It was found that the profiles of mom velocity and turbulent intensity, local maximum of velocity fluctuations, their locations as well as the stream-wise variation of integral properties such as skin friction, shape factor and maximum velocity fluctuations are very satisfactorily Predicted throughout the flow regions.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
v.9
no.1
/
pp.405-408
/
2005
This paper proposed the method to images of losses using restorable wavelet transformation. The algorithm proposed in this work stars by processing the pre-quantizer on the original images to organize an image that matches the gray level. The wavelet transformation filter to the original image which is already pre-quantized in order to segment bands. Considering the lowest coding of bands influencing the most to the overall condition of the reconstructed image, it only uses the Huffman coding using prediction. Reconstructed images by proposed algorithm showed higher PSNR when coding images of JPEG or non pre-quantized images. Applying pre-quantizer can control the peak errors and is expected to be useful at mass image compression.
The conventional observations of the Korea Meteorological Administration (KMA) and National Centers for Environmental Prediction (NCEP) are compared in the numerical weather forecast system at the Korea Institute of Atmospheric Prediction Systems (KIAPS). The weather forecasting system used in this study is consists of Korea Integrated Model (KIM) as a global numerical weather prediction model, three-dimensional variational method as a data assimilation system, and KIAPS Package for Observation Processing (KPOP) as an observation pre-processing system. As a result, the forecast performance of NCEP observation was better while the number of observation is similar to the KMA observation. In addition, the sensitivity of forecast performance was investigated for each SONDE, SURFACE and AIRCRAFT observations. The differences in AIRCRAFT observation were not sensitive to forecast, but the use of NCEP SONDE and SURFACE observations have shown better forecast performance. It is found that the NCEP observations have more wind observations of the SONDE in the upper atmosphere and more surface pressure observations of the SURFACE in the ocean. The results suggest that evenly distributed observations can lead to improved forecast performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.