• Title/Summary/Keyword: pre-prediction

Search Result 622, Processing Time 0.023 seconds

Development of Ground-based GNSS Data Assimilation System for KIM and their Impacts (KIM을 위한 지상 기반 GNSS 자료 동화 체계 개발 및 효과)

  • Han, Hyun-Jun;Kang, Jeon-Ho;Kwon, In-Hyuk
    • Atmosphere
    • /
    • v.32 no.3
    • /
    • pp.191-206
    • /
    • 2022
  • Assimilation trials were performed using the Korea Institute of Atmospheric Prediction Systems (KIAPS) Korea Integrated Model (KIM) semi-operational forecast system to assess the impact of ground-based Global Navigation Satellite System (GNSS) Zenith Total Delay (ZTD) on forecast. To use the optimal observation in data assimilation of KIM forecast system, in this study, the ZTD observation were pre-processed. It involves the bias correction using long term background of KIM, the quality control based on background and the thinning of ZTD data. Also, to give the effect of observation directly to data assimilation, the observation operator which include non-linear model, tangent linear model, adjoint model, and jacobian code was developed and verified. As a result, impact of ZTD observation in both analysis and forecast was neutral or slightly positive on most meteorological variables, but positive on geopotential height. In addition, ZTD observations contributed to the improvement on precipitation of KIM forecast, specially over 5 mm/day precipitation intensity.

An Integrated Accurate-Secure Heart Disease Prediction (IAS) Model using Cryptographic and Machine Learning Methods

  • Syed Anwar Hussainy F;Senthil Kumar Thillaigovindan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.504-519
    • /
    • 2023
  • Heart disease is becoming the top reason of death all around the world. Diagnosing cardiac illness is a difficult endeavor that necessitates both expertise and extensive knowledge. Machine learning (ML) is becoming gradually more important in the medical field. Most of the works have concentrated on the prediction of cardiac disease, however the precision of the results is minimal, and data integrity is uncertain. To solve these difficulties, this research creates an Integrated Accurate-Secure Heart Disease Prediction (IAS) Model based on Deep Convolutional Neural Networks. Heart-related medical data is collected and pre-processed. Secondly, feature extraction is processed with two factors, from signals and acquired data, which are further trained for classification. The Deep Convolutional Neural Networks (DCNN) is used to categorize received sensor data as normal or abnormal. Furthermore, the results are safeguarded by implementing an integrity validation mechanism based on the hash algorithm. The system's performance is evaluated by comparing the proposed to existing models. The results explain that the proposed model-based cardiac disease diagnosis model surpasses previous techniques. The proposed method demonstrates that it attains accuracy of 98.5 % for the maximum amount of records, which is higher than available classifiers.

Simulation and Testing of the Effect of Current Collection Performance According to Pre-sag in 400km/h Overhead Contact Lines (400km/h 전차선로에서 사전이도가 집전성능에 미치는 영향에 대한 시뮬레이션 및 시험)

  • Kwon, Sam Young;Cho, Yong Hyeon;Lee, Kiwon;Oh, Hyuck Keun
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.288-296
    • /
    • 2016
  • A 400km/h simple catenary system was constructed as a test line in Korea. In the design stage of this system, the pre-sag was one of the engineering issues most focused on. It is known that the pre-sag improves the current collection performance in a certain band of high speed. However, the effect of pre-sag at 400km/h has not yet been established. To grasp a better pre-sag in the 400km/h catenary, we transacted the dynamic performance prediction simulation between catenary and pantograph under conditions of 0 and 1/3000 pre-sag. The level of 0 pre-sag was adapted for the 400km/h catenary design after reviewing predictions. We constituted the 1/3000 pre-sag sample section (about 1km) while constructing the 400km/h catenary test-bed (28km) of 0 pre-sag. With a HEMU-430X train, the contact forces were measured in the test-bed including the pre-sag sample section. In this paper, the predicted and measured dynamic performance values (contact forces) for 0 and 1/3000 pre-sag are described and compared. It is conclusively confirmed by analytical and experimental examination that the non pre-sag showed better dynamic (current collection) performance than that of the 1/3000 pre-sag for the 400km/h catenary system.

Verifying Execution Prediction Model based on Learning Algorithm for Real-time Monitoring (실시간 감시를 위한 학습기반 수행 예측모델의 검증)

  • Jeong, Yoon-Seok;Kim, Tae-Wan;Chang, Chun-Hyon
    • The KIPS Transactions:PartA
    • /
    • v.11A no.4
    • /
    • pp.243-250
    • /
    • 2004
  • Monitoring is used to see if a real-time system provides a service on time. Generally, monitoring for real-time focuses on investigating the current status of a real-time system. To support a stable performance of a real-time system, it should have not only a function to see the current status of real-time process but also a function to predict executions of real-time processes, however. The legacy prediction model has some limitation to apply it to a real-time monitoring. First, it performs a static prediction after a real-time process finished. Second, it needs a statistical pre-analysis before a prediction. Third, transition probability and data about clustering is not based on the current data. We propose the execution prediction model based on learning algorithm to solve these problems and apply it to real-time monitoring. This model gets rid of unnecessary pre-processing and supports a precise prediction based on current data. In addition, this supports multi-level prediction by a trend analysis of past execution data. Most of all, We designed the model to support dynamic prediction which is performed within a real-time process' execution. The results from some experiments show that the judgment accuracy is greater than 80% if the size of a training set is set to over 10, and, in the case of the multi-level prediction, that the prediction difference of the multi-level prediction is minimized if the number of execution is bigger than the size of a training set. The execution prediction model proposed in this model has some limitation that the model used the most simplest learning algorithm and that it didn't consider the multi-regional space model managing CPU, memory and I/O data. The execution prediction model based on a learning algorithm proposed in this paper is used in some areas related to real-time monitoring and control.

Machine Learning Process for the Prediction of the IT Asset Fault Recovery (IT자산 장애처리의 사전 예측을 위한 기계학습 프로세스)

  • Moon, Young-Joon;Rhew, Sung-Yul;Choi, Il-Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.4
    • /
    • pp.281-290
    • /
    • 2013
  • The IT asset is a core part that supports the management objective of an organization, and the fast settlement of the IT asset fault is very important. In this study, a fault recovery prediction technique is proposed, which uses the existing fault data to address the IT asset fault. The proposed fault recovery prediction technique is as follows. First, the existing fault recovery data were pre-processed and classified by fault recovery type; second, a rule was established for the keyword mapping of the classified fault recovery types and reported data; and third, a machine learning process that allows the prediction of the fault recovery method based on the established rule was presented. To verify the effectiveness of the proposed machine learning process, company A's 33,000 computer fault data for the duration of six months were tested. The hit rate for fault recovery prediction was approximately 72%, and it increased to 81% via continuous machine learning.

Hazard prediction of coal and gas outburst based on fisher discriminant analysis

  • Chen, Liang;Wang, Enyuan;Feng, Junjun;Wang, Xiaoran;Li, Xuelong
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.861-879
    • /
    • 2017
  • Coal and gas outburst is a serious dynamic disaster that occurs during coal mining and threatens the lives of coal miners. Currently, coal and gas outburst is commonly predicted using single indicator and its critical value. However, single indicator is unable to fully reflect all of the factors impacting outburst risk and has poor prediction accuracy. Therefore, a more accurate prediction method is necessary. In this work, we first analyzed on-site impacting factors and precursors of coal and gas outburst; then, we constructed a Fisher discriminant analysis (FDA) index system using the gas adsorption index of drilling cutting ${\Delta}h_2$, the drilling cutting weight S, the initial velocity of gas emission from borehole q, the thickness of soft coal h, and the maximum ratio of post-blasting gas emission peak to pre-blasting gas emission $B_{max}$; finally, we studied an FDA-based multiple indicators discriminant model of coal and gas outburst, and applied the discriminant model to predict coal and gas outburst. The results showed that the discriminant model has 100% prediction accuracy, even when some conventional indexes are lower than the warning criteria. The FDA method has a broad application prospects in coal and gas outburst prediction.

Detection and Prediction of Subway Failure using Machine Learning (머신러닝을 이용한 지하철 고장 탐지 및 예측)

  • Kuk-Kyung Sung
    • Advanced Industrial SCIence
    • /
    • v.2 no.4
    • /
    • pp.11-16
    • /
    • 2023
  • The subway is a means of public transportation that plays an important role in the transportation system of modern cities. However, congestion often occurs due to sudden breakdowns and system outages, causing inconvenience. Therefore, in this paper, we conducted a study on failure prediction and prevention using machine learning to efficiently operate the subway system. Using UC Irvine's MetroPT-3 dataset, we built a subway breakdown prediction model using logistic regression. The model predicted the non-failure state with a high accuracy of 0.991. However, precision and recall are relatively low, suggesting the possibility of error in failure prediction. The ROC_AUC value is 0.901, indicating that the model can classify better than random guessing. The constructed model is useful for stable operation of the subway system, but additional research is needed to improve performance. Therefore, in the future, if there is a lot of learning data and the data is well purified, failure can be prevented by pre-inspection through prediction.

Intelligent optimal grey evolutionary algorithm for structural control and analysis

  • Z.Y. Chen;Yahui Meng;Ruei-Yuan Wang;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.33 no.5
    • /
    • pp.365-374
    • /
    • 2024
  • This paper adopts a new approach in which nonlinear vibrations can be controlled using fuzzy controllers by optimal grey evolutionary algorithm. If the fuzzy controller cannot stabilize the systems, then the high frequency is injected into the system to assist the controller, and the system is asymptotically stabilized by adjusting the parameters. This paper uses the GM (grey model) and the neural network prediction model. The structure of the neural network is improved from a single factor, and multiple data inputs are extended to various factors and numerous data inputs. The improved model expands the applicable range of uncontrolled elements and improves the accuracy of controlled prediction, using the model that has been trained and stabilized by multiple learning. The simulation results show that the improved gray neural network model has higher prediction accuracy and reliability than the traditional GM model, improving controlled management and pre-control ability. In the combined prediction, the time series parameters and the predicted values obtained from the GM (1,1) (Grey Model of first order and one variable) are simultaneously used as the input terms of the neural network, considering the influence of the non-equal spacing of the data, which makes the results of the combined gray neural network model more rationalized. By adjusting the model structure and system parameters to simulate and analyze the controlled elements, the corresponding risk change trend graphs and prediction numerical calculation results are obtained, which also realize the effective prediction of controlled elements. According to the controlled warning principle and objective, the fuzzy evaluation method establishes the corresponding early warning response method. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage.

A Case Study of Basic Data Science Education using Public Big Data Collection and Spreadsheets for Teacher Education (교사교육을 위한 공공 빅데이터 수집 및 스프레드시트 활용 기초 데이터과학 교육 사례 연구)

  • Hur, Kyeong
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.3
    • /
    • pp.459-469
    • /
    • 2021
  • In this paper, a case study of basic data science practice education for field teachers and pre-service teachers was studied. In this paper, for basic data science education, spreadsheet software was used as a data collection and analysis tool. After that, we trained on statistics for data processing, predictive hypothesis, and predictive model verification. In addition, an educational case for collecting and processing thousands of public big data and verifying the population prediction hypothesis and prediction model was proposed. A 34-hour, 17-week curriculum using a spreadsheet tool was presented with the contents of such basic education in data science. As a tool for data collection, processing, and analysis, unlike Python, spreadsheets do not have the burden of learning program- ming languages and data structures, and have the advantage of visually learning theories of processing and anal- ysis of qualitative and quantitative data. As a result of this educational case study, three predictive hypothesis test cases were presented and analyzed. First, quantitative public data were collected to verify the hypothesis of predicting the difference in the mean value for each group of the population. Second, by collecting qualitative public data, the hypothesis of predicting the association within the qualitative data of the population was verified. Third, by collecting quantitative public data, the regression prediction model was verified according to the hypothesis of correlation prediction within the quantitative data of the population. And through the satisfaction analysis of pre-service and field teachers, the effectiveness of this education case in data science education was analyzed.

Housing Values of Rental Housing in Ulsan (울산시 거주자의 임대주택에 대한 주거가치 유형 연구)

  • 서종녀;김선중
    • Journal of the Korean Home Economics Association
    • /
    • v.38 no.1
    • /
    • pp.89-98
    • /
    • 2000
  • The study attempts to explore housing values focusing on rental housing. It will be helped to supply rental housing, to clarify the prediction and th research in household moving. Major findings are the followings: 1. Housing values of rental housing in Ulsan showed $\ulcorner$Environment & Geography$\lrcorner$, $\ulcorner$Dwelling$\lrcorner$, $\ulcorner$Economy & management$\lrcorner$, $\ulcorner$Sociality$\lrcorner$, and $\ulcorner$Safety$\lrcorner$ in order. 2. The level of housing values in Ulsan was middling. 3. The types of housing values of rental housing showed $\ulcorner$Self-pursuit$\lrcorner$, $\ulcorner$Utility$\lrcorner$, $\ulcorner$Sociality$\lrcorner$, $\ulcorner$Rental housing$\lrcorner$, and $\ulcorner$Owner-housing$\lrcorner$ in order. 4. The type of housing values differed according to sex, pre-type of dwelling, and pre-area.

  • PDF