• Title/Summary/Keyword: pre-oxidation

Search Result 247, Processing Time 0.027 seconds

Cu,Zn-Superoxide Dismutase Is an Intracellular Catalyst for the H2O2-dependent Oxidation of Dichlorodihydrofluorescein

  • Kim, Young-Mi;Lim, Jung-Mi;Kim, Byung-Chul;Han, Sanghwa
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.161-165
    • /
    • 2006
  • Dichlorodihydrofluorescein ($DCFH_2$) is a widely used probe for intracellular $H_2O_2$. However, $H_2O_2$ can oxidize $DCFH_2$ only in the presence of a catalyst, whose identity in cells has not been clearly defined. We compared the peroxidase activity of Cu,Zn-superoxide dismutase (CuZnSOD), cytochrome c, horseradish peroxidase (HRP), $Cu^{2+}$, and $Fe^{3+}$ under various conditions to identify an intracellular catalyst. Enormous increase by bicarbonate in the rate of $DCFH_2$ oxidation distinguished CuZnSOD from cytochrome c and HRP. Cyanide inhibited the reaction catalyzed by CuZnSOD but accelerated that by $Cu^{2+}$ and $Fe^{3+}$. Oxidation of $DCFH_2$ by $H_2O_2$ in the presence of a cell lysate was also enhanced by bicarbonate and inhibited by cyanide. Confocal microscopy of $H_2O_2$-treated cells showed enhanced DCF fluorescence in the presence of bicarbonate and attenuated fluorescence for the cells pre-incubated with KCN. Moreover, DCF fluorescence was intensified in CuZnSOD-transfected HaCaT and RAW 264.7 cells. We propose that CuZnSOD is a potential intracellular catalyst for the $H_2O_2$-dependent oxidation of $DCFH_2$.

Characteristics of Films Formed on AZ31B Magnesium Alloy by Chemical Oxidation Process in Potassium Permanganate Solution (과망간산칼륨 용액에서 화학적으로 형성된 AZ31B 마그네슘 합금의 피막 특성평가)

  • Kim, Min-Jeong;Kim, Hyoung-Chan;Yoon, Seog-Young;Jung, Uoo-Chang
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.2
    • /
    • pp.44-49
    • /
    • 2011
  • The films formed on AZ31B magnesium alloy were prepared from alkaline solution composed of potassium permanganate and sodium hydroxide. The immersion tests were carried out at the different concentration of sodium hydroxide and pre-treatment method in 5 minute. The morphology and the phase composition of the film were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion behavior of the film in 5.0% NaCl solution was evaluated using potentiodyanmic polarization. Open circuit potential in developing film was examined with time. The thin and transparent film was mainly composed of MgO and $Mg(OH)_2$. The film with the best corrosion resistance was obtained at $70^{\circ}C$ bath temperature, 1.6 M concentration of sodium hydroxide and chemical pre-treatment.

Effect of Pre-oxidation of Pitch by H2O2 on Porosity of Activated Carbons (과산화수소에 의한 산화가 핏치계 활성탄소의 기공성질에 미치는 영향)

  • Kim, Young-Ha;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.183-187
    • /
    • 2010
  • Activated carbons (ACs) have been prepared from pitch by the combination of a chemical oxidation with different $H_2O_2$ concentrations i.e., 5, 15, and 25 wt% and a chemical activation with KOH at a constant KOH/pitch ratio of 3/1. The influence of $H_2O_2$ solution on the microporous properties of the pitch and the final activated carbons were invested using XRD, FT-IR, XPS, $N_2$-adsorption, and SEM. XRD indicated that the value of interplanar distance $d_{002}$ increased by chemical oxidation. FT-IR and XPS results showed that the chemical oxidation promoted the formation of surface oxygen functionalities. Also, the specific surface area of the resulting ACs was increased with increasing the concentration of $H_2O_2$ chemical oxidation and showed a maximum value of $2111m^2/g$ at 25 wt% $H_2O_2$ concentration.

Effect of Cell Size on the High Temperature Oxidation Properties of Fe-Cr-Al Powder Porous Metal Manufactured by Electro-spray Process (정전 분무 공정으로 제조된 Fe-Cr-Al 분말 다공체 금속의 고온 산화 특성에 미치는 기공 크기의 영향)

  • Oh, Jae-Sung;Kong, Young-Min;Kim, Byoung-Kee;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.21 no.1
    • /
    • pp.55-61
    • /
    • 2014
  • Fe-Cr-Al powder porous metal was manufactured by using new electro-spray process. First, ultra-fine fecralloy powders were produced by using the submerged electric wire explosion process. Evenly distributed colloid (0.05~0.5% powders) was dispersed on Polyurethane foam through the electro-spray process. And then degreasing and sintering processes were conduced. In order to examine the effect of cell size ($200{\mu}m$, $450{\mu}m$, $500{\mu}m$) in process, pre-samples were sintered for two hours at temperature of $1450^{\circ}C$, in $H_2$ atmospheres. A 24-hour thermo gravimetric analysis test was conducted at $1000^{\circ}C$ in a 79% $N_2$ + 21% $O_2$ to investigate the high temperature oxidation behavior of powder porous metal. The results of the high temperature oxidation tests showed that oxidation resistance increased with increasing cell size. In the $200{\mu}m$ porous metal with a thinner strut and larger specific surface area, the depletion of the stabilizing elements such as Al and Cr occurred more quickly during the high-temperature oxidation compared with the 450, $500{\mu}m$ porous metals.

Supercritical water oxidation of Dimethyl methylphosphonate(DMMP) (Dimethyl methylphosphonate(DMMP)의 초임계수 산화반응)

  • Lee, Hae-Wan;Ryu, Sam-Gon;Lee, Jong-Chol;Hong, Deasik
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.636-643
    • /
    • 2006
  • Supercritical water oxidation of DMMP using continuous flow reactor was studied at temperature ranging from 440 to $540^{\circ}C$ and a fixed pressure of 242 bar. The range of residence times in the reactor was from 10 to 26 s, and oxygen excess value varied from -40 to 200%. Destruction efficiencies (DE) of DMMP were greater than 99.7% at $540^{\circ}C$, and increased as the DMMP concentrations were increased. DE of DMMP were significantly affected by oxygen concentration under stoichiometric amount, but showed little difference over stoichiometric amount. On the basis of 30 data with conversions greater than 85%, kinetic correlations for the DE of DMMP were developed. The pre-exponential factor was $(1.10{\pm}0.76){\times}10^6$, and the activation energy was $90.66{\pm}3.87kJ/mol$, and the reaction orders for DMMP and oxygen were $1.02{\pm}0.03$, $0.32{\pm}0.03$, respectively. The model predictions agreed well with the experimental data.

Effect of Heat Treatment of the Diffusion Barrier for Bus Electrode of Plasma Display by Electroless Ni-B Deposition (무전해 Ni-B 도금을 이용한 플라즈마 디스플레이 버스 전극용 확산방지막의 열처리 영향)

  • Choi Jae Woong;Hwang Gil Ho;Hong Seok Jun;Kang Sung Goon
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.552-557
    • /
    • 2004
  • Thin Ni-B films, 1 ${\mu}m$ thick, were electrolessly deposited on Cu bus electrode fabricated by electro deposition. The purpose of these films is to encapsulate Cu electrodes for preventing Cu oxidation and to serve as a diffusion barrier against copper contamination of dielectric layer in AC-plasma display panel. The layers were heat treated at $580^{\circ}C$(baking temperature of dielectric layer) with and without pre-annealing at $300^{\circ}C$($Ni_{3}B$ formation temperature) for 30 minutes. In the layer with pre-annealing, amount of Cu diffusion was lower about 5 times than that in the layer without pre-annealing. The difference of Cu concentration could be attributed to Cu diffusion before $Ni_{3}B$ formation at grain boundaries. However, the diffusion behavior of the layer with pre-annealing was similar to that of the layer without pre-annealing after $Ni_{3}B$ formation. With increasing annealing time, Cu concentration of both layers increased due to grain growth.

Effect of Pre-rigor Salting Levels on Physicochemical and Textural Properties of Chicken Breast Muscles

  • Kim, Hyun-Wook;Hwang, Ko-Eun;Song, Dong-Heon;Kim, Yong-Jae;Ham, Youn-Kyung;Yeo, Eui-Joo;Jeong, Tae-Jun;Choi, Yun-Sang;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.35 no.5
    • /
    • pp.577-584
    • /
    • 2015
  • This study was conducted to evaluate the effect of pre-rigor salting level (0-4% NaCl concentration) on physicochemical and textural properties of pre-rigor chicken breast muscles. The pre-rigor chicken breast muscles were de-boned 10 min post-mortem and salted within 25 min post-mortem. An increase in pre-rigor salting level led to the formation of high ultimate pH of chicken breast muscles at post-mortem 24 h. The addition of minimum of 2% NaCl significantly improved water holding capacity, cooking loss, protein solubility, and hardness when compared to the non-salting chicken breast muscle (p<0.05). On the other hand, the increase in pre-rigor salting level caused the inhibition of myofibrillar protein degradation and the acceleration of lipid oxidation. However, the difference in NaCl concentration between 3% and 4% had no great differences in the results of physicochemical and textural properties due to pre-rigor salting effects (p>0.05). Therefore, our study certified the pre-rigor salting effect of chicken breast muscle salted with 2% NaCl when compared to post-rigor muscle salted with equal NaCl concentration, and suggests that the 2% NaCl concentration is minimally required to ensure the definite pre-rigor salting effect on chicken breast muscle.

Effect of sea tangle extract on the quality characteristics of reduced-salt, low-fat sausages using pre-rigor muscle during refrigerated storage

  • Geon Ho Kim;Koo Bok Chin
    • Animal Bioscience
    • /
    • v.36 no.11
    • /
    • pp.1738-1746
    • /
    • 2023
  • Objective: The aim of this study was to investigate quality characteristics of reduced-salt, low-fat pork sausage (PS) using pre-rigor muscle and sea tangle extract (STE) to reduce salt level of sausages during refrigerated storage. Methods: Pork ham was prepared with pre-rigor and post-rigor muscle from the local market. Sausages using post-rigor muscle were manufactured with the 1.5% of salt content, and samples with pre-rigor muscle were processed by different salt concentrations (0.8%). Accordingly, PSs were prepared in 4 treatments (REF, PS with 1.5% of salt using post-rigor muscle; CTL, PS with 0.8% of salt using pre-rigor muscle; TRT1, PS with 0.8% of salt and 5% of STE using pre-rigor muscle; TRT2, PS with 0.8% of salt and 10% of STE using pre-rigor muscle). For the evaluation of quality characteristics and shelf-life of reduced-salt PS, pH and color values, cooking loss (%), expressible moisture (%), textural properties, lipid oxidation (thiobarbituric reactive substances), protein denaturation (volatile basic nitrogen), and microbiological analysis (total plate counts and Enterobacteriaceae counts) were determined. Results: The pH and temperature of pre-rigor raw pork ham were higher than those of post-rigor pork ham. Hardness of TRT2 was higher than that of REF or CTL. TRT2 had higher gumminess and chewiness than CTL. TRT1 and TRT2 had lower volatile basic nitrogen than CTL. Total plate counts of TRT2 were lower than those of CTL. Expressible moisture values of TRT1 and TRT2 were similar to those of REF. The addition of STE into PS improved functional properties and shelf-life of PS. Conclusion: Reduced-salt PS containing pre-rigor muscle and STE had similar functional properties to those of regular-salt ones, while containing approximately 47% less salt compared to regular-salt level.

Effective Treatment System for the Leachate from a Small-Scale Municipal Waste Landfill (소규모 쓰레기 매립장 침출수의 효율적인 처리 방안에 관한 연구)

  • Cho Young-Ha;Kwon Jae Hyun
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.1
    • /
    • pp.51-65
    • /
    • 2002
  • This study was carried out to apply some basic physical and chemical treatment options including Fenton's oxidation, and to evaluate the performances and the characteristics of organic and nitrogen removal using lab-scale biological treatment system such as complete-mixing activated sludge and sequencing batch reactor(SBR) processes for the treatment of leachate from a municipal waste landfill in Gyeongnam province. The results were as follows: Chemical coagulation experiments using aluminium sulfate, ferrous sulfate and ferric chloride resulted in leachate CO $D_{Cr}$ removal of 32%, 23% and 21 % with optimum reaction dose ranges of 10,000~15,000 mg/$\ell$, 1,000 mg/$\ell$ and 500~2,000 mg/$\ell$, respectively. Fenton's oxidation required the optimum conditions including pH 3.5, 6 hours of reaction time, and hydrogen peroxide and ferrous sulfate concentrations of 2,000 ~ 3,000 mg/$\ell$ each with 1:1 weight ratio to remove more than 50% of COD in the leachate containing CO $D_{Cr}$ between 2,000 ~ 3,000 mg/$\ell$. Air-stripping achieved to remove more than 97% of N $H_3$-N in the leachate in spite of requiring high cost of chemicals and extensive stripping time, and, however, zeolite treatment removing 94% of N $H_3$-N showed high selectivity to N $H^{+}$ ion and much faster removal rate than air-stripping. The result from lab-scale experiment using a complete-mixing activated sludge process showed that biological treatability tended to increase more or less as HRT increased or F/M ratio decreased, and, however, COD removal efficiency was very poor by showing only 36% at HRT of 29 days. While COD removal was achieved more during Fenton's oxidation as compared to alum treatment for the landfill leachate, the ratio of BOD/COD after Fenton's oxidation considerably increased, and the consecutive activated sludge process significantly reduced organic strength to remove 50% of CO $D_{Cr}$ and 95% of BO $D_{5}$ . The SBR process was generally more capable of removing organics and nitrogen in the leachate than complete-mixing activated sludge process to achieve 74% removal of influent CO $D_{Cr}$ , 98% of BO $D_{5}$ and especially 99% of N $H_3$-N. However, organic removal rates of the SBR processes pre-treated with air-stripping and with zeolite were not much different with those without pre-treatment, and the SBR process treated with powdered activated carbon showed a little higher rate of CO $D_{Cr}$ removal than the process without any treatment. In conclusion, the biological treatment process using SBR proved to be the most applicable for the treatment of organic contents and nitrogen simultaneously and effectively in the landfill leachate.e.

Effects of Pre-reducing Sb-Doped SnO2 Electrodes in Viologen-Anchored TiO2 Nanostructure-Based Electrochromic Devices

  • Cho, Seong Mok;Ah, Chil Seong;Kim, Tae-Youb;Song, Juhee;Ryu, Hojun;Cheon, Sang Hoon;Kim, Joo Yeon;Kim, Yong Hae;Hwang, Chi-Sun
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.469-478
    • /
    • 2016
  • In this paper, we investigate the effects of pre-reducing Sb-doped $SnO_2$ (ATO) electrodes in viologen-anchored $TiO_2$ (VTO) nanostructure-based electrochromic devices. We find that by pre-reducing an ATO electrode, the operating voltage of a VTO nanostructure-based electrochromic device can be lowered; consequently, such a device can be operated more stably with less hysteresis. Further, we find that a pre-reduction of the ATO electrode does not affect the coloration efficiency of such a device. The aforementioned effects of a pre-reduction are attributed to the fact that a pre-reduced ATO electrode is more compatible with a VTO nanostructure-based electrochromic device than a non-pre-reduced ATO electrode, because of the initial oxidized state of the other electrode of the device, that is, a VTO nanostructure-based electrode. The oxidation state of a pre-reduced ATO electrode plays a very important role in the operation of a VTO nanostructure-based electrochromic device because it strongly influences charge movement during electrochromic switching.