• Title/Summary/Keyword: pre-mRNA

Search Result 217, Processing Time 0.023 seconds

UAP56- a key player with surprisingly diverse roles in pre-mRNA splicing and nuclear export

  • Shen, Hai-Hong
    • BMB Reports
    • /
    • v.42 no.4
    • /
    • pp.185-188
    • /
    • 2009
  • Transcripts contain introns that are usually removed from premessenger RNA (MRNA) in the process of pre-mRNA splicing. After splicing, the mature RNA is exported from the nucleus to the cytoplasm. The splicing and export processes are coupled. UAP56 protein, which is ubiquitously present in organisms from yeasts to humans, is a DExD/H-box family RNA helicase that is an essential splicing factor with various functions in the prespliceosome assembly and mature spliceosome assembly. Collective evidence indicates that UAP56 has an essential role in mRNA nuclear export. This mini-review summarizes recent evidence for the role of UAP56 in pre-mRNA splicing and nuclear export.

The Dharma of Nonsense-Mediated mRNA Decay in Mammalian Cells

  • Popp, Maximilian Wei-Lin;Maquat, Lynne E.
    • Molecules and Cells
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Mammalian-cell messenger RNAs (mRNAs) are generated in the nucleus from precursor RNAs (pre-mRNAs, which often contain one or more introns) that are complexed with an array of incompletely inventoried proteins. During their biogenesis, pre-mRNAs and their derivative mRNAs are subject to extensive cis-modifications. These modifications promote the binding of distinct polypeptides that mediate a diverse array of functions needed for mRNA metabolism, including nuclear export, inspection by the nonsense-mediated mRNA decay (NMD) quality-control machinery, and synthesis of the encoded protein product. Ribonucleoprotein complex (RNP) remodeling through the loss and gain of protein constituents before and after pre-mRNA splicing, during mRNA export, and within the cytoplasm facilitates NMD, ensuring integrity of the transcriptome. Here we review the mRNP rearrangements that culminate in detection and elimination of faulty transcripts by mammalian-cell NMD.

Effects of Divalent Cations on the Spicing of Phage T4 Thymidylate Synthase Intron RNA

  • Park, In-Kook;Sung, Jung-Suk;Shin, Sook
    • Animal cells and systems
    • /
    • v.1 no.1
    • /
    • pp.87-91
    • /
    • 1997
  • Effects of divalent cations such as $Mg^{2+}$, $Mn^{2+}$, $Ca^{2+}$, and $Zn^2$ on splicing activity of phage T4 thymidylate synthase intron RNA have been investigated. At the concentration of 0.5 mM, $Mn^{2+}$ in the absence of $Mg^{2+}$, a very small amount of pre-RNA was cleaved into ligation products (El-E2) but no circular or linear intron was produced. As the concentration of $Mn^{2+}$ was increased from 1 to 5 mM the pre-RNA was completely hydrolyzed. In the presence of 5 mM $Mg^{2+}$, both the linear intron and circular intron were produced but no El-E2 ligation product was produced. At both 3 and 5 mM $Mn^{2+}$ the RNA was hydrolyzed completely as observed with no $Mg^2+$ being present. In the case of $Zn^{2+}$, even at 0.5 mM concentration, the pre-RNA was completely hydrolyzed. This observation suggested that $Zn^{2+}$ facilitates RNA hydrolysis more rapidly than $Mn^{2+}$ does. at 5mM $Ca^{2+}$, the RNA was not hydrolyzed and remained intact as a primary transcript.

  • PDF

Thermodynamic Analyses of the Constitutive Splicing Pathway for Ovomucoid Pre-mRNA

  • Ro-Choi, Tae Suk;Choi, Yong Chun
    • Molecules and Cells
    • /
    • v.27 no.6
    • /
    • pp.657-665
    • /
    • 2009
  • The ovomucoid pre-mRNA has been folded into mini-hairpins adaptable for the RNA recognition motif (RRM) protein binding. The number of mini-hairpins were 372 for pre-mRNA and 83-86 for mature mRNA. The spatial arrangements are, in average, 16 nucleotides per mini-hairpin which includes 7 nt in the stem, 5.6 nt in the loop and 3.7 nt in the inter-hairpin spacer. The constitutive splicing system of ovomucoid-pre-mRNA is characterized by preferred order of intron removal of 5/6 > 7/4 > 2/1 > 3. The 5' splice sites (5'SS), branch point sequences (BPS) and 3' splice sites (3'SS) were identified and free energies involved have been estimated in 7 splice sites. Thermodynamic barriers for splice sites from the least (|lowest| -Kcal) were 5, 4, 7, 6, 2, 1, and 3; i.e., -18.7 Kcal, -20.2 Kcal, -21.0 Kcal, -24.0 Kcal, - 25.4 Kcal, -26.4 Kcal and -28.2 Kcal respectively. These are parallel to the kinetic data of splicing order reported in the literature. As a result, the preferred order of intron removals can be described by a consideration of free energy changes involved in the spliceosomal assembly pathway. This finding is consistent with the validity of hnRNP formation mechanisms in previous reports.

Identification of the Interaction between Insulin-like Growth Factor Binding Protein-4 (IGFBP-4) and Heterogeneous Nuclear Ribonucleoprotein L (hnRNP L) (IGF결합 단백질-4(IGFBP-4)와 이질 핵 리보핵산단백질 L (hnRNP L)의 상호결합의 식별)

  • Choi, Mieyoung
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1311-1316
    • /
    • 2013
  • Heterogeneous nuclear ribonucleoprotein L (hnRNP L) is a major pre-mRNA binding protein and it is an abundant nuclear protein that shuttles between the nucleus and the cytoplasm. hnRNP L is known to be related to many cellular processes, including chromatin modification, pre-mRNA splicing, mRNA export of intronless genes, internal ribosomal entry site (IRES)-mediated translation, mRNA stability, and spermatogenesis. In order to identify the cellular proteins interacting with hnRNP L, this study performed a yeast two-hybrid screening, using a human liver cDNA library. The study identified insulin-like growth factor binding protein-4 (IGFBP-4) as a novel interaction partner of hnRNP L in the human liver. It then discovered, for the first time, that hnRNP L interacts specifically with IGFBP-4 in a yeast two-hybrid system. The authenticity of this two-hybrid interaction of hnRNP L and IGFBP-4 was confirmed by an in vitro pull-down assay.

Alternative Splicing Pattern Analysis from RNA-Seq data (RNA-Seq 데이터를 이용한 선택 스플라이싱 유형 분석)

  • Kong, Jin-Hwa;Lee, Jong-Keun;Lee, Un-Joo;Yoon, Jee-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.37-40
    • /
    • 2011
  • 선택 스플라이싱 (alternative splicing)은 mRNA (messenger RNA)의 전구체인 pre-mRNA가 mRNA로 전사될 때 pre-mRNA의 엑손 영역들 (exons)이 여러 가지 유형 (pattern)으로 다시 연결되는 과정을 말한다. 선택 스플라이싱에 의해 하나의 유전자로부터 서로 다른 mRNA가 만들어 지고 서로 다른 이소형의 단백질 (protein isoforms)이 생성된다. 현재까지 알려진 선택 스플라이싱의 유형은 약 7가지 종류가 있으며, 유전자의 돌연변이 및 질병과 밀접한 연관성을 가지고 있는 것으로 알려져 있다. 본 연구에서는 차세대 시퀀싱 (Next Generation Sequencing : NGS) 기술로 생성된 RNA-Seq 데이터로부터 각 유전자 영역에 대한 선택 스플라이싱 유형을 분류/추출하는 새로운 알고리즘을 제안한다. 제안된 알고리즘에서는 RNA-Seq 데이터를 DNA 시퀀스와 mRNA 트랜스크립트 시퀀스에 동시 매핑하고, 각 엑손 영역에 정렬된 RNA-Seq 데이터의 커버리지 정보 및 엑손의 접합 (junction) 정보를 이용하여 발현된 트랜스크립트 (transcript)의 종류와 양을 측정한다. 알고리즘의 유효성을 보이기 위하여 시뮬레이션 데이터를 이용한 인간 유전자 영역에서의 선택 스플라이싱 유형 추출 실험을 수행하였으며, 검증된 선택 스플라이싱 DB와 비교, 검증하였다.

Isolation of New Self-Cleaving Ribozymes with in vitro Selection

  • Cho, Bong-Rae;Lee, Young-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.2033-2037
    • /
    • 2005
  • In vitro selection was used to isolate $Mg^{2+}$-dependent self-cleaving ribozymes with cis-cleavage activity from a pre-tRNA library having 40-mer random sequences attached to 5'-end of E. coli $tRNA^{Phe}$. After 8 rounds of SELEX (Systematic Evolution of Ligands by Exponential Enrichment), RNA molecules which can self-cleave at the high concentration of $Mg^{2+}$ were isolated. The selected ribozymes can carry out the self-cleavage reaction in the presence of 100 mM $Mg^{2+}$ but not in 10 mM $Mg^{2+}$. The cleavage sites of the ribozymes are located at +3 and +4 of $tRNA^{Phe}$, compared with +1 position of 5'-end cleavage site of pre-tRNA by RNase P. New RNA constructs deprived of its D stem-loop, anticodon stem-loop, variable loop and T stem-loop, respectively showed the cleavage specificity identical to a ribozyme having the intact tRNA structure. Also, the new ribozyme fused with both a ribozyme and $tRNA^{Leu}$ showed the cleavage activities at the various sites within its sequences, different from two sites of position +3 and +4 observed in the ribozyme with $tRNA^{Phe}$. Our results suggest that the selected ribozyme is not structural-specific for tRNA.

Relative strength of 5' splice-site strength defines functions of SRSF2 and SRSF6 in alternative splicing of Bcl-x pre-mRNA

  • Choi, Namjeong;Liu, Yongchao;Oh, Jagyeong;Ha, Jiyeon;Ghigna, Claudia;Zheng, Xuexiu;Shen, Haihong
    • BMB Reports
    • /
    • v.54 no.3
    • /
    • pp.176-181
    • /
    • 2021
  • Bcl-x, a member of the Bcl-2 family, plays a key role in apoptosis. Alternative splicing of Bcl-x pre-mRNA through alternative 5' splice-site selection produces an anti-apoptotic mRNA isoform that includes exon 2b and a pro-apoptotic Bcl-x mRNA isoform that excludes exon 2b. Here we used Bcl-x minigene and identified SRSF2 and SRSF6 as two regulatory factors of 5' splice-site selection of Bcl-x pre-mRNA. We selected binding clusters closer to 5' splice-sites from multiple potential binding sites of SRSF2 and SRSF6 to perform loss of functions analysis through site-directed mutagenesis. Our results demonstrated that these mutations did not abolish regulatory functions of SRSF2 or SRSF6, indicating that a single binding motif or a cluster was not a functional target of these proteins in Bcl-x pre-mRNA splicing. Random deletion mutagenesis did not disrupt the role of SRSF2 and SRSF6. Importantly, mutagenesis of 5' splice-site to a conserved or a weaker score demonstrated that the weaker strength of the target 5' splice-site or higher strength of the other 5' splice-site strength limited the role of SRSF2 and SRSF6 in 5' splice-site activation.

Altered expression of norepinephrine transporter and norepinephrine in human placenta cause pre-eclampsia through regulated trophoblast invasion

  • Na, Kyu-Hwan;Choi, Jong Ho;Kim, Chun-Hyung;Kim, Kwang-Soo;Kim, Gi Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.40 no.1
    • /
    • pp.12-22
    • /
    • 2013
  • Objective: We investigated the norepinephrine transporter (NET) expression in normal and pre-eclamptic placentas and analyzed the invasion activity of trophoblastic cells based on norepinephrine (NE)-NET regulation. Methods: NET and NE expression levels were examined by western blot and enzyme-linked immunosorbent assay, respectively. Trophoblast invasion activity, depending on NE-NET regulation, was determined by NET-small interfering RNA (siRNA) and NET transfection into the human extravillous trophoblast cells with or without NE treatment and invasion rates were analyzed by zymography and an invasion assay. Results: NET mRNA was expressed at a low level in pre-eclamptic placentas compared with normal placentas and NE concentration in maternal plasma increased significantly in pre-eclamptic women compared to normal pregnant women (p<0.05). NET gene upregulation and NE treatment stimulated trophoblast cell invasion up to 2.5-fold (p<0.05) by stimulating matrix metalloproteinase-9 activity via the phosphoinositol-3-kinase/AKT signaling pathway, whereas NET-siRNA with NE treatment reduced invasion rates. Conclusion: NET expression is reduced by inadequate regulation of NE levels during placental development. This suggests that a complementary balance between NET and NE regulates trophoblast cell invasion activities during placental development.

Partial Purification and Characterization of Enzymes Involved in the Processing of Pre-M1 RNA at the 3' End in Escherichia coli (대장균에서 선구-M1 RNA의 3'-말단 가공에 관여하는 효소들의 부분 정제와 그 특성 조사)

  • Kim, Ha Dong;Ko, Jae Hyeong;Cho, Bong Rae;Lee, Young Hoon;Park, In Won
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.3
    • /
    • pp.307-314
    • /
    • 1999
  • Ml RNA, the RNA component of RNase P from Escherichia coli, is produced by 3' processing of pre-Ml RNA, a major primary transcript of the rnpB gene. The enzyme fraction containing the processing activity was partially purified and characterized. Since exposure of the active fraction to the high salt condition results in the inactivation of the processing activity, the processing enzyme seems to be an enzyme complex composed of multiple enzymes. The enzyme fraction loses the processing activity when treated with the chemical nuclease lead(II) ion, but regains its activity by the addition of RNA isolated from the enzyme fraction itself, suggesting that an RNA molecule(s) may be essential for the processing activity. Analysis of cleavage sites produced by the partially purified enzyme fraction also implies that the 3' processing occurs by multiple enzymes and at least in two distinct pathways.

  • PDF