• Title/Summary/Keyword: pre-existing fracture size

Search Result 7, Processing Time 0.017 seconds

Influence of size and location of a pre-existing fracture on hydraulic fracture propagation path

  • Bo, Zhang;Yao, Li;Xue Y., Yang;Shu C., Li;Chao, Wei;Juan, Songa
    • Geomechanics and Engineering
    • /
    • v.32 no.3
    • /
    • pp.321-333
    • /
    • 2023
  • Rock masses often contain natural fractures of varying sizes, and the size of the natural fractures may affect the propagation of hydraulic fractures. We conduct a series of triaxial hydraulic fracturing tests to investigate the effect of the pre-existing fracture size a on hydraulic fracture propagation. Experimental results show that the pre-existing fracture size impacts hydraulic fracture propagation. As the pre-existing fracture size increases, the hydraulic fracture propagates towards the pre-existing fracture tips, evidenced by the decreased distance between the final hydraulic fracture and the pre-existing fracture tips. Furthermore, the attracting effect of pre-existing fracture tips increases when the distance between the wellbore and the pre-existing fracture is short (L/D=2 or 4 in this study). With increased distance between the wellbore and the pre-existing fracture (L/D=6 in this study), the hydraulic fracture propagates to the middle of the pre-existing fracture rather than the tips, as the attracting effect of the pre-existing fracture diminishes.

Influence of pre-existing surface defects on NiTi rotary instrument failure: A SEM study

  • Shin, Yu-Mi;Kim, Wu-Sung;Kum, Kee-Yeon
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.594-594
    • /
    • 2003
  • I. Objectives The purpose of this study is to determine if propagation of pre-existing manufacturing defects results in brittle fracture of NiTi rotary files by examining the fracture surface of the instrument by SEM, and to compare the fracture time of NiTi rotary files with different flute designs under cyclic loading. II. Materials and Methods This study examined three groups of rotary NiTi instruments (K3, ProFile, Hero). Of each group, 04 taper, size 30 and 06 taper, size 25 were selected.:120 in total. Surface defects were created by simulating the machining process of NiTi rotaries.(omitted)

  • PDF

The effect of ball size on the hollow center cracked disc (HCCD) in Brazilian test

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Moradizadeh, Masih
    • Computers and Concrete
    • /
    • v.22 no.4
    • /
    • pp.373-381
    • /
    • 2018
  • Hollow center cracked disc (HCCD) in Brazilian test was modelled numerically to study the crack propagation in the pre-cracked disc. The pre-existing edge cracks in the disc models were considered to investigate the crack propagation and coalescence paths within the modelled samples. The effect of particle size on the hollow center cracked disc (HCCD) in Brazilian test were considered too. The results shows that Failure pattern is constant by increasing the ball diameter. Tensile cracks are dominant mode of failure. These crack initiates from notch tip, propagate parallel to loading axis and coalescence with upper model boundary. Number of cracks increase by decreasing the ball diameter. Also, tensile fracture toughness was decreased with increasing the particle size. In this research, it is tried to improve the understanding of the crack propagation and crack coalescence phenomena in brittle materials which is of paramount importance in the stability analyses of rock and concrete structures, such as the underground openings, rock slopes and tunnel construction.

PFC3D simulation of the effect of particle size on the single edge-notched rectangle bar in bending test

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.497-505
    • /
    • 2018
  • Three points bending flexural test was modeled numerically to study the crack propagation in the pre-cracked beams. The pre-existing edge cracks in the beam models were considered to investigate the crack propagation and coalescence paths within the modeled samples. The effects of particle size on the single edge-notched round bar in bending test were considered too. The results show that Failure pattern is constant by increasing the ball diameter. Tensile cracks are dominant mode of failure. These crack initiates from notch tip, propagate parallel to loading axis and coalescence with upper model boundary. Number of cracks increase by decreasing the ball diameter. Also, tensile fracture toughness was decreased with increasing the particle size. In the present study, the influences of particles sizes on the cracks propagations and coalescences in the brittle materials such as rocks and concretes are numerically analyzed by using a three dimensional particle flow code (PFC3D). These analyses improve the understanding of the stability of rocks and concretes structures such as rock slopes, tunnel constructions and underground openings.

The effect of particle size on the edge notched disk (END) using particle flow code in three dimension

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.663-673
    • /
    • 2018
  • In this study, the effect of particle size on the cracks propagation and coalescence or cracking pattern of the edge notched disc specimens are investigated. Firstly, calibration of PFC3D was performed using Brazilian experimental test output. Then micro parameters were used to build edge notched disc specimen. The horizontal wall of the assembly is let to move downward with a standard low speed of 0.016 m/s. The numerical results show that the tensile cracks are dominant failure pattern for the modeled discs. These tensile cracks initiate from the pre-existing notch tip and propagate parallel to the loading direction then interact with the upper boundary of the modeled specimen. As the size of the balls (ball diameter) decrease the number of tensile cracks increase. The tensile fracture toughness of the samples also decreases as the particle size increases. Understanding the crack propagation and crack coalescence phenomena in brittle materials such as concretes and rocks is of paramount importance in the stability analyses for engineering structures such as rock slopes, underground structures and tunneling.

A Study on the Mechanical Properties of $ZrO_2$ Based Composite ($ZrO_2$를 이차상으로한 복합체의 기계적 특성)

  • 신동우;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.5
    • /
    • pp.76-84
    • /
    • 1985
  • Mechanical property enhancing mechanisms of $Al_2O_3-ZrO_2$ two phase ceramic composites were studied for several compositions of different $ZrO_2$/$Al_2O_3$ ratio. Microstructural analysis of $Al_2O_3-ZrO_3$(pure) composites indicated that pre-existing microcrack due to larger $ZrO_2$ particle at grain boundary extended along alumina grain boundaries within process zone. Microcracks also nucleated when very small $ZrO_2$ particles at the grain boundaries transformed to monoclinic phase at near of main crack tip. These types of microcracks could contribute to the toughening achieved by creating additional crack surface area during crack propagation. Microstructural analyses also showed that the average grain size and abnormal grain size of $Al_2O_3$ were decreased with increasing $ZrO_2$ vol% in $Al_2O_3$ matrix. As a result it could be concluded as follows In TEX>$Al_2O_3-ZrO_3$(pure) system 1. Microcrack nucleation (stress-induced microcracking) and extension was effective mechanism for absorpiton of fracture energy 2, More narrow distribution and smaller grain size of $Al_2O_3$ due to $ZrO_2$particles mainly contributed to main-tatin the strength and hardness.

  • PDF

Micro Cracking and Elastic/Plastic Transition Radii Associated with Indenting on Ceramics by Diamond Indenter (경취재료에 있어 압자압입시의 균열진전에 관한 연구)

  • Park, G.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.164-172
    • /
    • 1996
  • In hard and brittle materials as advanced ceramics indented by a hard indenter, the indenter's transition radius, was defined as critical radius which distinguishes the occurrence of the first plastic deformation from the elastic cracking as the first damaging event, is analytically and experimentally investigated. The analytical result is shown that the critical load, which not enlarge pre-existing cracks as the form of median crack beneath a indenter, is constant, and is determined by the order of $k_{IC}$$^{4}$ $P_{Y}$$^{3}$(where, $K_{IC}$ , $P_{Y}$are the fracture toughness of materials and the applied pressure by indenting, respectively). And the size of transiton radii were experimentally obtained with the similar values to the analytical results.lts..

  • PDF