• 제목/요약/키워드: pre-amplification PCR

검색결과 18건 처리시간 0.023초

Highly Sensitive Detection of Low-Abundance White Spot Syndrome Virus by a Pre-Amplification PCR Method

  • Pan, Xiaoming;Zhang, Yanfang;Sha, Xuejiao;Wang, Jing;Li, Jing;Dong, Ping;Liang, Xingguo
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권3호
    • /
    • pp.471-479
    • /
    • 2017
  • White spot syndrome virus (WSSV) is a major threat to the shrimp farming industry and so far there is no effective therapy for it, and thus early diagnostic of WSSV is of great importance. However, at the early stage of infection, the extremely low-abundance of WSSV DNA challenges the detection sensitivity and accuracy of PCR. To effectively detect low-abundance WSSV, here we developed a pre-amplification PCR (pre-amp PCR) method to amplify trace amounts of WSSV DNA from massive background genomic DNA. Combining with normal specific PCR, 10 copies of target WSSV genes were detected from ${\sim}10^{10}$ magnitude of backgrounds. In particular, multiple target genes were able to be balanced amplified with similar efficiency due to the usage of the universal primer. The efficiency of the pre-amp PCR was validated by nested-PCR and quantitative PCR, and pre-amp PCR showed higher efficiency than nested-PCR when multiple targets were detected. The developed method is particularly suitable for the super early diagnosis of WSSV, and has potential to be applied in other low-abundance sample detection cases.

Different Real Time PCR Approaches for the Fine Quantification of SNP's Alleles in DNA Pools: Assays Development, Characterization and Pre-validation

  • Mattarucchi, Elia;Marsoni, Milena;Binelli, Giorgio;Passi, Alberto;Lo Curto, Francesco;Pasquali, Francesco;Porta, Giovanni
    • BMB Reports
    • /
    • 제38권5호
    • /
    • pp.555-562
    • /
    • 2005
  • Single nucleotide polymorphisms (SNPs) are becoming the most common type of markers used in genetic analysis. In the present report a SNP has been chosen to test the applicability of Real Time PCR to discriminate and quantify SNPs alleles on DNA pools. Amplification Refractory Mutation System (ARMS) and Mismatch Amplification Mutation Assay (MAMA) has been applied. Each assay has been pre-validated testing specificity and performances (linearity, PCR efficiency, interference limit, limit of detection, limit of quantification, precision and accuracy). Both the approaches achieve a precise and accurate estimation of the allele frequencies on pooled DNA samples in the range from 5% to 95% and don't require standard curves or calibrators. The lowest measurement that could be significantly distinguished from the background noise has been determined around the 1% for both the approaches, allowing to extend the range of quantifications from 1% to 99%. Furthermore applicability of Real Time PCR assays for general diagnostic purposes is discussed.

Fluorometric Detection of Low-Abundance EGFR Exon 19 Deletion Mutation Using Tandem Gene Amplification

  • Kim, Dong-Min;Zhang, Shichen;Kim, Minhee;Kim, Dong-Eun
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권5호
    • /
    • pp.662-667
    • /
    • 2020
  • Epidermal growth factor receptor (EGFR) mutations are not only genetic markers for diagnosis but also biomarkers of clinical-response against tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC). Among the EGFR mutations, the in-frame deletion mutation in EGFR exon 19 kinase domain (EGFR exon 19-del) is the most frequent mutation, accounting for about 45% of EGFR mutations in NSCLCs. Development of sensitive method for detecting the EGFR mutation is highly required to make a better screening for drug-response in the treatment of NSCLC patients. Here, we developed a fluorometric tandem gene amplification assay for sensitive detection of low-abundance EGFR exon 19-del mutant genomic DNA. The method consists of pre-amplification with PCR, thermal cycling of ligation by Taq ligase, and subsequent rolling circle amplification (RCA). PCR-amplified DNA from genomic DNA samples was used as splint DNA to conjugate both ends of linear padlock DNA, generating circular padlock DNA template for RCA. Long stretches of ssDNA harboring multiple copies of G-quadruplex structure was generated in RCA and detected by thioflavin T (ThT) fluorescence, which is specifically intercalated into the G-quadruplex, emitting strong fluorescence. Sensitivity of tandem gene amplification assay for detection of the EGFR exon 19-del from gDNA was as low as 3.6 pg, and mutant gDNA present in the pooled normal plasma was readily detected as low as 1% fraction. Hence, fluorometric detection of low-abundance EGFR exon 19 deletion mutation using tandem gene amplification may be applicable to clinical diagnosis of NSCLC patients with appropriate TKI treatment.

Quantitative real-time PCR assays for the concurrent diagnosis of infectious laryngotracheitis virus, Newcastle disease virus and avian metapneumovirus in poultry

  • Mo, Jongseo;Angelichio, Michael;Gow, Lisa;Leathers, Valerie;Jackwood, Mark W.
    • Journal of Veterinary Science
    • /
    • 제23권2호
    • /
    • pp.21.1-21.7
    • /
    • 2022
  • Newcastle disease (ND), infectious laryngotracheitis (ILT) and avian metapneumovirus (aMPV) can be similar making it critical to quickly differentiate them. Herein, we adapted pre-existing molecular-based diagnostic assays for NDV and ILTV, and developed new assays for aMPV A and B, for use under synchronized thermocycling conditions. All assays performed equivalently with linearity over a 5 log10 dynamic range, a reproducible (R2 > 0.99) limit of detection of ≥ 10 target copies, and amplification efficiencies between 86.8%-98.2%. Using biological specimens for NDV and ILTV showed 100% specificity. Identical amplification conditions will simplify procedures for detection in diagnostic laboratories.

UNG 기반 direct polymerase chain reaction (udPCR)을 이용한 돼지 써코바이러스 2형 진단법 (UNG-based direct polymerase chain reaction (udPCR) for the detection of porcine circovirus 2 (PCV2))

  • 김은미;박최규
    • 한국동물위생학회지
    • /
    • 제37권4호
    • /
    • pp.253-261
    • /
    • 2014
  • Porcine circovirus disease (PCVD) is a major problem of swine industry worldwide, and diagnosis of PCV2, causal agent of PCVD, has been doing in clinical laboratories of pig disease by polymerase chain reaction (PCR) methods. But the PCR analyses have a serious problem of misdiagnosis by contamination of DNA, in particular, from carryover contamination with previously amplified DNA or extracted DNA from field samples. In this study, an uracil DNA glycosylase (UNG)-based direct PCR (udPCR) without DNA extraction process and DNA carryover contamination was developed and evaluated on PCV2 culture and field pig samples. The sensitivity of the udPCR combined with dPCR and uPCR was same or better than that of the commercial PCR (cPCR) kit (Median diagnostics, Korea) on PCV2-positive serum, lymph node and lung samples of the pigs. In addition, the udPCR method confirmed to have a preventing ability of mis-amplification by contamination of pre-amplified PCV2 DNA from previous udPCR. In clinical application, 170 pig samples (86 tissues and 84 serum) were analysed by cPCR kit and resulted in 37% (63/170) of positive reaction, while the udPCR was able to detect the PCV2 DNA in 45.3% (77/170) with higher sensitivity than cPCR. In conclusion, the udPCR developed in the study is a time, labor and cost saving method for the detection of PCV2 and providing a preventing effect for DNA carryover contamination that can occurred in PCR process. Therefore, the udPCR assay could be an useful alternative method for the diagnosis of PCV2 in the swine disease diagnostic laboratories.

구기자나무 (Lycium chinense)의 효과적인 재분화 및 내염성 유전자가 도입된 형질전환체의 개발 (Advanced Regeneration and Genetic Transformation of Lycium chinense Harboring Salt Tolerance Genes)

  • 이진숙;권기원;배창휴;양덕춘
    • 식물조직배양학회지
    • /
    • 제28권1호
    • /
    • pp.47-52
    • /
    • 2001
  • 구기자나무의 효과적인 재분화조건을 바탕으로 염류내성유 전자인 Bet A와 Bet B유전자의 도입을 시도하였다. 구기자나무의 절편체를 재료로 kinetin 1 mg/L, IBA 0.05 mg/L가 첨가된 MS배지에 2일간 전배양한 후 Agrobacterium과 공조배양 및 선발배지에서의 배양으로 kanamycin에 내성을 갖는 잠정적인 형질전환체를 유도하였다. 형질전환체는 PCR 기법 및 Southern blot분석으로 Bet A와 Bet B 유전자 전이를 확인하였고, 도입된 유전자의 발현은 RT-PCR 방법을 사용하여 확인하였다.

  • PDF

Fragile-X Mental Retardation: Molecular Diagnosis in Argentine Patients

  • Florencia, Giliberto;Irene, Szijan;Veronica, Ferreiro
    • BMB Reports
    • /
    • 제39권6호
    • /
    • pp.766-773
    • /
    • 2006
  • Fragile-X-syndrome (FXS) is the most common type of inherited cognitive impairment. The underlying molecular alteration consists of a CGG-repeat amplification within the FMR-1 gene. The phenotype is only apparent once a threshold in the number of repeats has been exceeded (full mutation). The aim of this study was to characterize the FMR-1 CGG-repeat status in Argentine patients exhibiting mental retardation. A total of 330 blood samples from patients were analyzed by PCR and Southern blot analysis. Initially, DNA from 78 affected individuals were studied by PCR. Since this method is unable to detect high molecular weight alleles, however, we undertook a second approach using the Southern blotting technique to analyze the CGG repeat number and methylation status. Southern blot analysis showed an altered pattern in 14 out of 240 (6%) unrelated patients, with half of them presenting a mosaic pattern. Eight out of 17 families (47%) showed a (suggest deleting highlight). The characteristic FXS pattern was identified in 8/17 families (47%), and in 4 of these families 25% of the individuals presented with a mosaic model. The expansion from pre-mutation to full mutation was shown to occur both at the pre and post zygotic levels. The detection of FXS mutations has allowed us to offer more informed genetic counseling, prenatal diagnosis and reliable patient follow-up.

Development of a lateral flow dipstick test for the detection of 4 strains of Salmonella spp. in animal products and animal production environmental samples based on loop-mediated isothermal amplification

  • Wirawan Nuchchanart;Prapasiri Pikoolkhao;Chalermkiat Saengthongpinit
    • Animal Bioscience
    • /
    • 제36권4호
    • /
    • pp.654-670
    • /
    • 2023
  • Objective: This study aimed to develop loop-mediated isothermal amplification (LAMP) combined with lateral flow dipstick (LFD) and compare it with LAMP-AGE, polymerase chain reaction (PCR), and standard Salmonella culture as reference methods for detecting Salmonella contamination in animal products and animal production environmental samples. Methods: The SalInvA01 primer, derived from the InvA gene and designed as a new probe for LFD detection, was used in developing this study. Adjusting for optimal conditions by temperature, time, and reagent concentration includes evaluating the specificity and limit of detection. The sampling of 120 animal product samples and 350 animal production environmental samples was determined by LAMP-LFD, comparing LAMP-AGE, PCR, and the culture method. Results: Salmonella was amplified using optimal conditions for the LAMP reaction and a DNA probe for LFD at 63℃ for 60 minutes. The specificity test revealed no cross-reactivity with other microorganisms. The limit of detection of LAMP-LFD in pure culture was 3×102 CFU/mL (6 CFU/reaction) and 9.01 pg/μL in genomic DNA. The limit of detection of the LAMP-LFD using artificially inoculated in minced chicken samples with 5 hours of pre-enrichment was 3.4×104 CFU/mL (680 CFU/reaction). For 120 animal product samples, Salmonella was detected by the culture method, LAMP-LFD, LAMP-AGE, and PCR in 10/120 (8.3%). In three hundred fifty animal production environmental samples, Salmonella was detected in 91/350 (26%) by the culture method, equivalent to the detection rates of LAMP-LFD and LAMP-AGE, while PCR achieved 86/350 (24.6%). When comparing sensitivity, specificity, positive predictive value, and accuracy, LAMP-LFD showed the best results at 100%, 95.7%, 86.3%, and 96.6%, respectively. For Kappa index of LAMP-LFD, indicated nearly perfect agreement with culture method. Conclusion: The LAMP-LFD Salmonella detection, which used InvA gene, was highly specific, sensitive, and convenient for identifying Salmonella. Furthermore, this method could be used for Salmonella monitoring and primary screening in animal products and animal production environmental samples.

DNA 교차오염 방지기능이 있는 single-tube nested reverse transcription-polymerase chain reaction을 이용한 돼지생식기호흡기증후군바이러스 유전형 감별진단 (Single-tube nested reverse transcription-polymerase chain reaction for simultaneous detection of genotyping of porcine reproductive and respiratory syndrome virus without DNA carryover contamination)

  • 정필수;박수진;김은미;박지영;박유리;강대영;차현욱;이경기;김성희;박최규
    • 한국동물위생학회지
    • /
    • 제39권2호
    • /
    • pp.107-116
    • /
    • 2016
  • In the study, we developed and evaluated a uracil N-glycosylase (UNG)-supplemented single-tube nested reverse transcription-polymerase chain reaction (UsnRT-PCR) assay that can carried out first-round RT-PCR and second-round nested PCR in a reaction tube without reaction tube opening and can simultaneously detect EU- and NA-PRRSV. The UsnRT-PCR confirmed to have a preventing ability of mis-amplification by contamination of pre-amplified PRRSV DNA from previous UsnRT-PCR. Primer specificities were evaluated with RNAs extracted from 8 viral strains and our results revealed that the primers had a high specificity for both genotypes of PRRSV. The sensitivity of the UsnRT-PCR was 0.1 $TCID_{50}$/0.1 mL for EU- or NA-PRRSV, respectively, which is comparable to that of previously reported real time RT-PCR (RRT-PCR). Clinical evaluation on 110 field samples (60 sera and 50 lung tissues) by the UsnRT-PCR and the RRT-PCR showed that detection rates of the UsnRT-PCR was 70% (77/110), and was relatively higher than that of the RRT-PCR (69.1%, 76/110). The percent positive or negative agreement of the UsnRT-PCR compared to RRT-PCR was 96.1% (73/76) or 90.9% (30/33), showing that the test results of both assays may be different for some clinical samples. Therefore, it is recommend that diagnostic laboratory workers use the two diagnostic assays for the correct diagnosis for the relevant samples in the swine disease diagnostic laboratories. In conclusion, the UsnRT-PCR assay can be applied for the rapid, and reliable diagnosis of PRRSV without concerns about preamplified DNA carryover contamination that can occurred in PCR process in the swine disease diagnostic laboratories.

Embryo sexing methods in bovine and its application in animal breed

  • Bora, Shelema Kelbessa
    • 한국동물생명공학회지
    • /
    • 제37권2호
    • /
    • pp.80-86
    • /
    • 2022
  • The ability to determine the sex of bovine embryos before the transfer is advantageous in livestock management, especially in dairy production, where female calves are preferred in milk industry. The milk production of female and male cattle benefits both the dairy and beef industries. Pre-implantation sexing of embryos also helps with embryo transfer success. There are two approaches for sexing bovine embryos in farm animals: invasive and non-invasive. A non-invasive method of embryo sexing retains the embryo's autonomy and, as a result, is less likely to impair the embryo's ability to move and implant successfully. There are lists of non-invasive embryo sexing such as; Detection of H-Y antigens, X-linked enzymes, and sexing based on embryo cleavage and development. Since it protects the embryo's autonomy, the non-invasive procedure is considered to be the safest. Invasive methods affect an embryo's integrity and are likely to damage the embryo's chances of successful transformation. There are different types of invasive methods such as polymerase chain reaction, detection of male chromatin Y chromosome-specific DNA probes, Loop-mediated isothermal amplification (LAMP), cytological karyotyping, and immunofluorescence (FISH). The PCR approach is highly sensitive, precise, and effective as compared to invasive methods of farm animal embryonic sexing. Invasive procedures, such as cytological karyotyping, have high accuracy but are impractical in the field due to embryonic effectiveness concerns. This technology can be applicable especially in the dairy and beef industry by producing female and male animals respectively. Enhancing selection accuracy and decreasing the multiple ovulation embryo transfer costs.