• 제목/요약/키워드: practical surface

검색결과 1,221건 처리시간 0.028초

자유수면을 포함한 사각기둥의 횡동요 유체동역학 수치해석 (A RANS-based Simulation for the Prediction of Hydrodynamic Rolling Moments around Rectangular Cylinders with Free Surface)

  • 김수환;김광수;박일룡;반석호;김진
    • 대한조선학회논문집
    • /
    • 제43권6호
    • /
    • pp.667-674
    • /
    • 2006
  • Accurate prediction of ship dynamics, particularly roll motion, is very important in ship safety. In the past, empirical or vortex based methods were commonly used for the hydrodynamic roll damping predictions but they could not be applied to practical ship roll motion cause of limitations about geometries ad design conditions. Recently RANS-based techniques are developed for the practical ship motion analysis. In this study, RANS based roil analysis about a rectangular cylinder with WAVIS developed by MOERI/KORDI are performed and compared with the experimental data and other RANS results.

A numerical simulation for reduction of rudder cavitation with gap flow blocking bars

  • Oh, Jung-Keun;Lee, Seung-Hee;Kim, Sang-Hyun;Seo, Dae-Won
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권2호
    • /
    • pp.71-82
    • /
    • 2012
  • In recent practices, a half circular prismatic bar protruding beyond the concave surface of the horn facing the gap has been formed along the centerplane of a rudder to lessen the gap flow between the horn and the movable portion of the rudder system. If a flow through the gap of a rudder is reduced considerably through this approach, previous numerical studies indicate that not only the gap flow but also the rudder cavitation can be noticeably diminished. In the present study, numerical simulations on two-dimensional rudder sections were performed to show that the blocking ability of the single centre bar can be improved by the proper choice of sectional shape. Moreover, a pair of blocking bars attached symmetric to the centerplane on the opposite convex surface of the movable portion is suggested in the study as well, to circumvent the difficulties arising from the practical application of the single centre bars. The bars are placed near the outer edges of the gap easily accessible at the maximum rudder angle to allow simple installation of the device during a maintenance period of a ship. It is found that the pair of blocking bars further improves the blocking effects and application to a practical three-dimensional rudder also backs up the fact.

Fabrication Tolerance of InGaAsP/InP-Air-Aperture Micropillar Cavities as 1.55-㎛ Quantum Dot Single-Photon Sources

  • Huang, Shuai;Xie, Xiumin;Xu, Qiang;Zhao, Xinhua;Deng, Guangwei;Zhou, Qiang;Wang, You;Song, Hai-Zhi
    • Current Optics and Photonics
    • /
    • 제4권6호
    • /
    • pp.509-515
    • /
    • 2020
  • A practical single photon source for fiber-based quantum information processing is still lacking. As a possible 1.55-㎛ quantum-dot single photon source, an InGaAsP/InP-air-aperture micropillar cavity is investigated in terms of fabrication tolerance. By properly modeling the processing uncertainty in layer thickness, layer diameter, surface roughness and the cavity shape distortion, the fabrication imperfection effects on the cavity quality are simulated using a finite-difference time-domain method. It turns out that, the cavity quality is not significantly changing with the processing precision, indicating the robustness against the imperfection of the fabrication processing. Under thickness error of ±2 nm, diameter uncertainty of ±2%, surface roughness of ±2.5 nm, and sidewall inclination of 0.5°, which are all readily available in current material and device fabrication techniques, the cavity quality remains good enough to form highly efficient and coherent 1.55-㎛ single photon sources. It is thus implied that a quantum dot contained InGaAsP/InP-air-aperture micropillar cavity is prospectively a practical candidate for single photon sources applied in a fiber-based quantum information network.

Sports balls made of nanocomposite: investigating how soccer balls motion and impact

  • Ling Yang;Zhen Bai
    • Advances in nano research
    • /
    • 제16권4호
    • /
    • pp.353-363
    • /
    • 2024
  • The incorporation of nanoplatelets in composite and polymeric materials represents a recent and innovative approach, holding substantial promise for diverse property enhancements. This study focuses on the application of nanocomposites in the production of sports equipment, particularly soccer balls, aiming to bridge the gap between theoretical advancements and practical implications. Addressing the longstanding challenge of suboptimal interaction between carbon nanofillers and epoxy resin in epoxy composites, this research pioneers inventive solutions. Furthermore, the investigation extends into unexplored territory, examining the integration of glass fiber/epoxy composites with nanoparticles. The incorporation of nanomaterials, specifically expanded graphite and graphene, at a concentration of 25.0% by weight in both the epoxy structure and the composite with glass fibers demonstrates a marked increase in impact resistance compared to their nanomaterial-free counterparts. The research transcends laboratory experiments to explore the practical applications of nanocomposites in the design and production of sports equipment, with a particular emphasis on soccer balls. Analytical techniques such as infrared spectroscopy and scanning electron microscopy are employed to scrutinize the surface chemical structure and morphology of the epoxy nanocomposites. Additionally, an in-depth examination of the thermal, mechanical, viscoelastic, and conductive properties of these materials is conducted. Noteworthy findings include the efficacy of surface modification of carbon nanotubes in preventing accumulation and enhancing their distribution within the epoxy matrix. This optimization results in improved interfacial interactions, heightened thermal stability, superior mechanical properties, and enhanced electrical conductivity in the nanocomposite.

사면의 지표변위계측을 위한 사진측량기법의 적용 (Application of Photogrammetry Method to Measurement of Ground-Surface Displacement on the Slope)

  • 한중근;배상호;오다영
    • 한국환경복원기술학회지
    • /
    • 제4권3호
    • /
    • pp.10-18
    • /
    • 2001
  • The existing measurement system to ground-surface displacement survey of the slope has been including the hazard for the measure in site and the difficulty for install, maintenance and control of expensive instruments, which are impossible of whole survey on the slope surface. To overcome of those defects, Softcopy Photogrammertry method is used, which can measure displacement of ground-surface on the slope and structure deformation vectors. Recently, the survey methods applying the advantages of Photogrammetry and Digital Photogrammetry Survey are widely used. In this study, therefore, the development and application of the new instrument mechanism on the the site example are studied. Through the application of Softcopy Photogrammetry, the 3-D data of ground surface on the dangerous slope could be effectively obtained at the long distance, which are obtained through the reform process of contour line. Those are different to the results of the Close-Range Photogrammetry analysis. In ground instrumentation parts, the new practical system shall be the technical base to improve of the instrument machine as well as can be widely applied in civil engineering and others branch.

  • PDF

3차원 물체 인식을 위한 표면 분류 및 임계치의 선정 (Surface Classification and Its Threshold Value Selection for the Recognition of 3-D Objects)

  • 조동욱;백승재;김동원
    • 한국음향학회지
    • /
    • 제19권3호
    • /
    • pp.20-25
    • /
    • 2000
  • 본 논문에서는 3차원 물체 인식을 위한 표면 분류 및 임계치 선정 방법에 대해 제안 하고자 한다. 3차원 영상 처리는 크게 거리 영상의 획득과 특징 추출 그리고 정합 과정으로 이루어진다. 본 논문에서는 전체 3차원 영상 처리 시스템중 거리 영상을 입력으로 했을 시 형상 특징을 추출하는 방법에 대해 제안하고자 한다. 이를 위해 첫째, 거리 영상의 깊이 변화 부호 값의 분포 특성에 따라 표면을 분류하는 방법을 제안하고자 한다. 또한 평균 곡률과 가우스 곡률을 이용하여 표면을 분류했던 기존 방법을 토대로 그의 문제점이었던 실제 거리 영상에서의 임계치 선정 방법에 대하여 제안하고자 한다. 끝으로 제안한 방법의 유용성을 실험에 의해 입증하고자 한다.

  • PDF

Growth Mechanism of Graphene structure on 3C-SiC(111) Surface: A Molecular Dynamics Simulation

  • 황유빈;이응관;최희채;정용재
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.433-433
    • /
    • 2011
  • Since the concept of graphene was established, it has been intensively investigated by researchers. The unique characteristics of graphene have been reported, the graphene attracted a lot of attention for material overcomes the limitations of existing semiconductor materials. Because of these trends, economical fabrication technique is becoming more and more important topic. Especially, the epitaxial growth method by sublimating the silicon atoms on Silicon carbide (SiC) substrate have been reported on the mass production of high quality graphene sheets. Although SiC exists in a variety of polytypes, the 3C-SiC polytypes is the only polytype that grows directly on Si substrate. To practical use of graphene for electronic devices, the technique, forming the graphene on 3C-SiC(111)/Si structure, is much helpful technique. In this paper, we report on the growth of graphene on 3C-SiC(111) surface. To investigate the morphology of formed graphene on the 3C-SiC(111) surface, the radial distribution function (RDF) was calculated using molecular dynamics (MD) simulation. Through the comparison between the kinetic energies and the diffusion energy barrier of surface carbon atoms, we successfully determined that the graphitization strongly depends on temperature. This graphitization occurs above the annealing temperature of 1500K, and is also closely related to the behavior of carbon atoms on SiC surface. By analyzing the results, we found that the diffusion energy barrier is the key parameter of graphene growth on SiC surface.

  • PDF

화염경화 표면처리 공정에 의한 12Cr 강의 잔류응력 거동 (Behavior of the Residual Stress on the Surfaces of 12Cr Steels Generated by Flame Hardening Process)

  • 이민구;김광호;김경호;김흥회
    • 한국표면공학회지
    • /
    • 제37권4호
    • /
    • pp.226-233
    • /
    • 2004
  • The residual stresses on the surfaces of low carbon 12Cr steels used as a nuclear steam turbine blade material have been studied by controlling the flame hardening surface treatments. The temperature cycles on the surfaces of 12Cr steel were controlled precisely as a function of both the surface temperature and cooling rate. The final residual stress state generated by flame hardening was dominated by two opposite competitive contributions; one is tensile stress due to phase transformation and the other is compressive stress due to thermal contraction on cooling. The optimum processing temperatures required for the desirable residual stress and hardness were in the range of $850^{\circ}C$ to $960^{\circ}C$ on the basis of the specification of GE power engineering. It was also observed that the high residual tensile stress generated by flame hardening induced the cracks on the surfaces, especially across the prior austenite grain boundaries, and the material failure virtually, which might limit practical use of the surface engineered parts by flame hardening.

역공학에서의 측정점의 분할에 의한 B-spline 곡면의 재생성 (B-spline Surface Reconstruction in Reverse Engineering by Segmentation of Measured Point Data)

  • 허성민;김호찬;이석희
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.1961-1970
    • /
    • 2002
  • A laser scanner is widely used fur a device fur acquiring point data in reverse engineering. It is more efficient to generate a surface automatically from the line-typed data than scattered data of points clouds. In the case of a compound model, it is hard to represent all the scanned data into one surface maintaining its original line characteristics. In this paper, a method is presented to generate a surface by the segmentation of measured point data. After forming triangular net, the segmentation is done by the user input such as the angle between triangles, the number of facets to be considered as small segment, and the angle for combining small segment. B-spline fitting is implemented to the point data in each segment. The surface generation through segmentation shows a reliable result when it is applied to the models with curvature deviation regions. An useful algorithm for surface reconstruction is developed and verified by applying an practical model and shows a good tools fur reverse engineering in design modification.

무전해도금법으로 형성한 Ni-P-SiC 복합도금막의 특성 (Properties of Ni-P-SiC Composite Coating Layers Prepared by Electroless Plating Method)

  • 이홍기;이호영;전준미
    • 한국표면공학회지
    • /
    • 제40권2호
    • /
    • pp.70-76
    • /
    • 2007
  • Ni-P-SiC composite coating layers were prepared by electroless plating method and their deposition rate, codeposition of SiC, morphology, surface roughness, hardness, wear and friction properties were investigated. The deposition rate was kept almost constant independent of the concentration of SiC in the plating solution and the codeposition of SiC in the composite coating layer increased with increased concentration of SiC in the plating solution except the early stage. Vickers microhardness increased with respect to the increased codeposition of SiC and the heat treatment at $300^{\circ}C$ in air for 1 hour. It was found that the wear volume decreased with increased up to 50 wt.% of SiC codeposition, and that friction coefficient increased gradually with increased codeposition of SiC. Considering the wear and the friction behaviors, the composite coating layer obtained by using 50 wt.% of SiC codeposition is desirable for the practical application for anti-wear and anti-friction coatings.