• Title/Summary/Keyword: practical equation

Search Result 1,007, Processing Time 0.029 seconds

A Proposal of Simplified Eigenvalue Equation for an Analysis of Dielectric Slab Waveguide

  • Choi Young-Kyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.381-386
    • /
    • 2006
  • In dielectric waveguide analysis and synthesis, we often encounter an awkward task of solving the eigenvalue equation to find the value of propagation constant. Since the dispersion equation is an irrational equation, we cannot solve it directly. Taking advantage of approximated calculation, we attempt here to solve this irrational dispersion equation. A new type of eigenvalue equation, in which guide index is expressed as a function of frequency, has been developed. In practical optical waveguide designing and in calculating the propagation mode, this equation will be used more conveniently than the previous one. To expedite the design of the waveguide, we then solve the eigenvalue equation of a slab waveguide, which is sufficiently accurate for practical purpose.

ESTIMATION OF ENERGY & MOMENTUM COEFFICIENTS IN OPEN CHANNEL BY CHIU'S VELOCITY DISTRIBUTION EQUATION (Chiu의 유속공식에 의한 유속분포계수의 추정)

  • 추태호
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1992.07a
    • /
    • pp.55-66
    • /
    • 1992
  • The energy and momentum coefficients ${\alpha}$ and ${\beta}$ are measures of homogenerity of velocity distribution in a chanel section. They indicate the effect of energy and momentum transport. However, in most practical applications, they are assumed to be unity due to the difficulty in estimating them. Efforts have been made in this study to estimate these coefficients and to develop equations for practical applications. The Prandtl-von Karman logarithmic equation as being used today has limitations and far-reaching assumptions. Therefore, this paper uses Chiu's velocity distribution equation which seems to be capable of serving as such an alternative, to estimate the velocity distribution and the energy and momentum coefficients, ${\alpha}$ and ${\beta}$ results are compared with those computed by other existing equations. For practical applications, this paper also uses Chiu's equation along with the Mannig's equation to calculate ${\alpha}$, ${\beta}$ without velocity data

A Study on the Development of Regional Master Recession Curve Model

  • Lee, Jae-Hyoung;Oh, Nam-Sun;Lee, Hee-Ju
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.61-71
    • /
    • 2001
  • A regional master recession curve model to predict groundwater discharges in a given basin was presented. Considering a stream-aquifer system, both theoretical and experimental baseflow equations were compared and a practical groundwater discharge equation was derived, The groundwater discharge equation was expanded and transformed to the discharge equation at the basin exit. For practical use, the equation was expressed as a function of watershed area, the mean slope of basin and the recession constant. To verify the model, the model was applied to Ssang-chi basin where long-term and temporal hydrological data at the upper basin were collected. Our results show that a master recession curve of unmeasured area can be predicted.

  • PDF

A Comparison Study Between Navier-Stokes Equation and Reynolds Equation in Lubricating Flow Regime

  • Song, Dong-Joo;Seo, Duck-Kyo;William W. Schultz
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.599-605
    • /
    • 2003
  • For practical calculations, the Reynolds equation is frequently used to analyze the lubricating flow. The full Navier-Stokes Equations are used to find validity limits of Reynolds equation in a lubricating flow regime by result comparison. As the amplitude of wavy upper wall increased at a given average channel height, the difference between Navier-Stokes and lubrication theory decreased slightly : however, as the minimum distance in channel throat increased, the differences in the maximum pressure between Navier-Stokes and lubrication theory became large.

Development of Artificial Intelligence Constitutive Equation Model Using Deep Learning (딥 러닝을 이용한 인공지능 구성방정식 모델의 개발)

  • Moon, H.B.;Kang, G.P.;Lee, K.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.30 no.4
    • /
    • pp.186-194
    • /
    • 2021
  • Finite element simulation is a widely applied method for practical purpose in various metal forming process. However, in the simulation of elasto-plastic behavior of porous material or in crystal plasticity coupled multi-scale simulation, it requires much calculation time, which is a limitation in its application in practical situations. A machine learning model that directly outputs the constitutive equation without iterative calculations would greatly reduce the calculation time of the simulation. In this study, we examined the possibility of artificial intelligence based constitutive equation with the input of existing state variables and current velocity filed. To introduce the methodology, we described the process of obtaining the training data, machine learning process and the coupling of machine learning model with commercial software DEFROMTM, as a preliminary study, via rigid plastic finite element simulation.

A Practical Real-Time LOS Rate Estimator with Time-Varying Measurement Noise Variance (시변 측정잡음 모델을 고려한 실시간 시선각 변화율 추정필터)

  • Na, Won-Sang;Lee, Jin-Ik
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2082-2084
    • /
    • 2003
  • A practical real-time LOS rate estimator is proposed to handle the time-varying measurement noise statistics. To calculate the optimal Kalman gain, the algebraic transformation method is taken into account. By using the algebraic transformation, the differential algebraic Riccati equation(DARE) regarding estimation error covariance is replaced by the simple algebraic Riccati equation(ARE). The proposed LOS estimation filter gain is only a function of relative range. Consequently, the proposed method is computationally very efficient and suitable for embedded environment.

  • PDF

Practical Study on Adjustment of Load Correlation Equations of Pole Transformer (주상변압기 부하 상관식 조정에 관한 실증적 연구)

  • 박창호;김두봉;김기현;배주천;윤상윤;김재철
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.1
    • /
    • pp.102-108
    • /
    • 2000
  • This paper presents a result of practical study about the adjustment of load correlation equation for the load management of pole transformer. For adjusting the load correlation equation, we analyze the correlative relation between working electric energy[kWh] and peak load[A]. To enhance the accuracy of correlation equation, we classify the 12 representative area patterns. And then, we select the 24 sample pole transformer for each area pattern. For the reliability of the data using the load correlation equation, load management equipment is utilized for each sample pole transformer. Through the on-line data acquisition, we construct the database. For adjusting the load correlation equation, we consider the two points. One is the goodness of fitness for load correlation equation and the other is prevention of pole transformer damage due to the overload. Finally, we propose the correlation equation using the linear and quadratic equation all at once. Through the case studies, we verify that the proposed load correlation equation is reduced the error ratio than conventional correlation equation.

  • PDF

Mobility in the Contact Joint of a Mechanism (접촉 조인트에서의 운동자유도)

  • Lee, Jang-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.109-114
    • /
    • 2007
  • The mobility (degree of freedom) of mechanisms can be regarded as independent coordinate to define its position. This concept is essential for kinematics, and for designing mechanisms in the practical point of view. Gruebler's equation has been applied to estimate the mobility using number of links and joints of a mechanism. In practical case, there are many types of mechanisms, which transfer motion by direct contact between two links. However, no exact kinematic definition has existed for the joint that the contact takes place in a mechanism. In this paper, a new concept of contact joint is defined and modified Gruebler's equation is suggested to calculate mobility of a mechanism with the joint. This concept would be useful in mechanism design because it will be possible to manage many contact mechanisms with kinematic exactness.

A New Accurate Equation for Estimating the Baseline for the Reversal Peak of a Cyclic Voltammogram

  • Oh, Sung-Hoon;Chang, Byoung-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.293-297
    • /
    • 2016
  • Here we propose a new equation by which we can estimate the baseline for measuring the peak current of the reverse curve in a cyclic voltammogram. A similar equation already exists, but it is a linear algebraic equation that over-simplifies the voltammetric curve and may cause unpredictable errors when calculating the baseline. In our study, we find a quadratic algebraic equation that acceptably reflects the complexity included in a voltammetric curve. The equation is obtained from a laborious numerical analysis of cyclic voltammetry simulations using the finite element method, and not from the closed form of the mathematical equation. This equation is utilized to provide a virtual baseline current for the reverse peak current. We compare the results obtained using the old linear and new quadratic equations with the theoretical values in terms of errors to ascertain the degree to which accuracy is improved by the new equation. Finally, the equations are applied to practical cyclic voltammograms of ferricyanide in order to confirm the improved accuracy.

DETERMINATION OF THE FLEXURAL RIGIDITY OF A BEAM FROM LIMITED BOUNDARY MEASUREMENTS

  • LESNIC DANIEL
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.17-34
    • /
    • 2006
  • Inverse coefficient identification problems associated with the fourth-order Sturm-Liouville operator in the steady state Euler-Bernoulli beam equation are investigated. Unlike previous studies in which spectral data are used as additional information, in this paper only boundary information is used, hence non-destructive tests can be employed in practical applications.