• 제목/요약/키워드: pozzolanic materials

검색결과 118건 처리시간 0.025초

고강도 시멘트 복합체의 강도특성에 미치는 혼합재료의 영향 (An Effect of Blending Materials on the Strength Characteristics of High Strength Cement Composite)

  • 최일규;김정환;한기성
    • 한국세라믹학회지
    • /
    • 제31권3호
    • /
    • pp.330-336
    • /
    • 1994
  • High strength cement composites (W/C=0.1) were prepared by using various blending materials such as SiC whisker and white carbon (hydrated silica: SiO2·nH2O). The effect of various blending materials on the microstructure and strength of the hardened cement paste were investigated in the view of fracture mechanics. The plain specimen showed 101 MPa of flexural strength, 81 GPa of Young's modulus and 1.32 MPam1/2 of fracture toughness. When the blending materials were added to the composites, their values were enhanced to about 110∼138 MPa, 95∼146 GPa and 1.32∼1.87MPam1/2 respectively. The improvement of the mechanical strength for the hardened cement paste may be due to the removal of macropores, the reduction of total porosity, pozzolanic reaction and the increase of various fracture toughening effect.

  • PDF

TiO2 입자의 사이즈가 바인더젯 3D 프린팅 시멘트계 재료의 특성에 미치는 영향 (Effect of nano-TiO2 size on the properties of cement-based materials produced by binder jet 3D printing)

  • 유준성;리패기;배성철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.188-189
    • /
    • 2022
  • With the development of nano-reinforcement technology, TiO2 nanomaterials have received widespread attention as one of the additives without pozzolanic reaction, which can be used to improve the mechanical properties of cement-based materials. Meanwhile, with the development of additive manufacturing technology or known as 3D printing technology, its application in the construction field has also got noticed. Therefore, in this work, the effect of three sizes of TiO2 on the compressive strength of hardened cement-based materials fabricated by binder jetting 3d printing was evaluated. According to the results, the TiO2 particles with larger sizes can provide better reinforcement to the hardened cement due to its more significant filling effect.

  • PDF

충북지역 점토광물의 포졸란 반응 가능성에 관한 연구 (A Study on the Pozolanic Reaction of Clay Minerals in Chung-buk Area)

  • 임도순;최희용;천종대;류현기
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.695-698
    • /
    • 2005
  • Ever since man learnt to build homes and cities around 10,000 years ago, clay materials has undoubtedly been one of the most widely-used construction materials in the world. However, the clay has poor strength, water resistance and durability, thus being limitedly used as calcined clay after being calcined. Pozzolan materials is to improve the strength and the durability of concrete as a result of the pozzolanic reaction. Therefore, the purpose of this study is to analyzes ingredient about clay mineral about Chung-buk area 10 places and to examine the application of clay minerals for the concrete admixtures.

  • PDF

산업부산물로 제조한 콘크리트 벽돌 및 인터록킹 블록의 특성 (Properties of the Concrete Bricks and Interlocking Blocks Made with the Industrial By-Product)

  • 최정호;서상교
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.179-184
    • /
    • 2000
  • The presens study was aimed to investigate the possibility of use of pozzolanic materials such as blast furnace slag, fly ash, paper sludge ash which are produced from industrial wastes, as construction materials. Experiments were undertaken to investigate the properties of concrete bricks and interlocking blocks made with these industrial by-products. As a result, it was found that the concrete bricks and interlocking blocks made with substitute materials have equivalent strength and quality to those of conventional concrete bricks and interlocking blocks made with only cement. Thus, it could be expected that recycling the industrial wastes can reduce manufacturing costs of the cement as well as prevent environmental pollution by the use of the by-products thrown out as wastes to make secondary products of the concrete.

  • PDF

초미분말 애시를 혼합한 시멘트의 물성 (Physical Properties of Ultrafine Ash Blended Cement)

  • 유동우;변승호;송종택
    • 한국세라믹학회지
    • /
    • 제44권9호
    • /
    • pp.489-495
    • /
    • 2007
  • Effects of ultrafinely ground ash on the rheological properties of cement paste were investigated. Also compressive strength development and setting time of ultrafine ash blended cement mortar were investigated in the study. A sample with silica fume was included for comparison. According to the results of ultra fine ash blended cement paste in the lower W/B ratio, the fluidity were high, and the setting time was a little retarded. And the compressive strength of ultrafine ash blended mortar was increased in the long term. In the case of hardened cement paste at 28 days, $Ca(OH)_2$ contents was decreased in order of control, ultrafine ash, silica fume blended cement due to difference of the pozzolanic reaction.

알카리 활성화에 의한 fly ash 경화체의 강도 발현 메카니즘에 관한 연구 (Strength behaviour and hardening mechanism of alkali activated fly ash Mortars)

  • 조병완;구자갑;박승국;박종화
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.321-324
    • /
    • 2004
  • The discharge of fly ash that is produced by coal-fired electric power plants is rapidly increasing in Korea. The utilization of fly ash in the raw materials would contribute to the elimination of an environmental problem and to the development of new high-performance materials. So it is needed to study the binder obtained by chemically activation of pozzolanic materials by means of a substitute for the exiting cement. This paper concentrated on the strength development according to the kind of chemical activators, the curing temperature, the heat curing time. Also Scanning electron microscopy and X-Ray diffraction analysis show what the reaction products of the alkali activated fly ash are.

  • PDF

Experimental & computational study on fly ash and kaolin based synthetic lightweight aggregate

  • Ipek, Suleyman;Mermerdas, Kasim
    • Computers and Concrete
    • /
    • 제26권4호
    • /
    • pp.327-342
    • /
    • 2020
  • The objective of this study is to manufacture environmentally-friendly synthetic lightweight aggregates that may be used in the structural lightweight concrete production. The cold-bonding pelletization process has been used in the agglomeration of the pozzolanic materials to achieve these synthetic lightweight aggregates. In this context, it was aimed to recycle the waste fly ash by employing it in the manufacturing process as the major cementitious component. According to the well-known facts reported in the literature, it is stated that the main disadvantage of the synthetic lightweight aggregate produced by applying the cold-bonding pelletization technique to the pozzolanic materials is that it has a lower strength in comparison with the natural aggregate. Therefore, in this study, the metakaolin made of high purity kaolin and calcined kaolin obtained from impure kaolin have been employed at particular contents in the synthetic lightweight aggregate manufacturing as a cementitious material to enhance the particle crushing strength. Additionally, to propose a curing condition for practical attempts, different curing conditions were designated and their influences on the characteristics of the synthetic lightweight aggregates were investigated. Three substantial features of the aggregates, specific gravity, water absorption capacity, and particle crushing strength, were measured at the end of 28-day adopted curing conditions. Observed that the incorporation of thermally treated kaolin significantly influenced the crushing strength and water absorption of the aggregates. The statistical evaluation indicated that the investigated properties of the synthetic lightweight aggregate were affected by the thermally treated kaolin content more than the kaoline type and curing regime. Utilizing the thermally treated kaolin in the synthetic aggregate manufacturing lead to a more than 40% increase in the crushing strength of the pellets in all curing regimes. Moreover, two numerical formulations having high estimation capacity have been developed to predict the crushing strength of such types of aggregates by using soft-computing techniques: gene expression programming and artificial neural networks. The R-squared values, indicating the estimation performance of the models, of approximately 0.97 and 0.98 were achieved for the numerical formulations generated by using gene expression programming and artificial neural networks techniques, respectively.

폐글라스울이 콘크리트의 역학적 특성에 미치는 영향 (Effect of Waste Glass Wool on Mechanical Properties of Concrete)

  • 김정태;최우혁;정철우;이재용
    • 한국건축시공학회지
    • /
    • 제16권2호
    • /
    • pp.117-123
    • /
    • 2016
  • 글라스울(Glass Wool)은 건설 현장 및 여러 다양한 분야에서 단열재로 사용되고 있다. 글라스울의 경우 불연재료이며 화재시 유해한 가스를 발생시키지 않으므로, 단열재로서의 사용이 더욱 권고되고 있는 상황이다. 그러나 글라스울이 반복적인 습윤 건조의 싸이클에 노출되면, 공극의 감소및 수축이 발생하여 단열성능을 잃게 되므로, 주기적인 교체가 필요하다. 본 연구에서는 이러한 폐글라스울을 콘크리트용 첨가재료로 활용하여 역학적 성능을 개선하고자 하는 시도를 하였다. 실험 결과에 따르면 폐글라스울은 약한 포졸란 반응성을 가지며, 압축강도 및 휨강도의 증가 효과를 가짐을 알 수 있었으며, 이를 위한 최적의 폐글라스울 혼입량은 콘크리트 체적의 0.5%에 해당되는 것으로 나타났다.

순환골재 콘크리트의 염화물 확산성에 관한 연구 (A Study on the Chloride Diffusivity of Recycled Aggregate Concrete)

  • 배종민;김영수
    • 한국건축시공학회지
    • /
    • 제10권1호
    • /
    • pp.147-153
    • /
    • 2010
  • 폐콘크리트를 굵은 골재의 대체 재료로 재활용하게 되면, 건설폐기물의 증가위기와 천연골재의 고갈문제를 해결해 줄 수 있다. 그러나 순환골재는 콘크리트용 골재의 품질보다 저하되는 경향이 있기 때문에, 이를 개선하여 콘크리트 재료로 활용해야 한다. 순환골재 콘크리트의 내구성에 관한 논문은 부족한 실정이므로, 본 연구에서는 염화물 확산계수에 의해 포졸란재를 혼입한 순환골재 콘크리트의 염화물 확산성에 대한 기초적인 자료를 제시하는데 그 목적이 있다. 주요 결과로는 다음과 같다. 1) 재령에 따라 포졸란재를 혼입한 순환골재 콘크리트의 압축강도가 증가하였으며, 염화물 확산성은 감소하였다. 2) 모든 재령에서, 순환굵은골재의 치환율이 30%인 경우 고로슬래그 및 메타카올린을 혼입한 순환골재 콘크리트의 염화물 확산계수는 플레인 콘크리트와 유사하거나 더 낮은 결과를 나타내었다.

포졸란 재료를 사용한 순환골재 콘크리트의 품질 개선 (Improvement on the Properties of Recycled Aggregate Concrete Using Pozzolanic Materials)

  • 문대중;김완종;김학수
    • 한국건설순환자원학회논문집
    • /
    • 제5권1호
    • /
    • pp.117-124
    • /
    • 2010
  • 순환골재는 KS F 2573에 만족하지 않는 골재를 사용하였다. 포졸란재료를 혼합하지 않은 순환골재 콘크리트의 재령 28일 압축강도는 21.7MPa 정도로 부순굵은골재을 사용한 콘크리트보다 강도발현이 작게 나타났다. 반면에 조강포틀랜드시멘트를 시멘트 중량에 2.5% 혼합하므로써 재령 28일 압축강도가 향상되었으며, 플라이애시와 고로슬래그 미분말 및 규조분말의 영향으로 재령 91일 및 180일 압축강도 증진효과가 크게 나타났다. 포졸란재료를 혼합한 순환골재 콘크리트의 인장강도도 보통콘크리트에 비하여 약 40% 정도의 강도증진 효과가 있었다. 아울러 플라이애시와 고로슬래그 미분말을 혼합한 순환골재 콘크리트의 건조수축 및 크리프는 플라이애시와 규조분말을 사용한 순환골재 콘크리트에 비하여 약간 감소하였다. 순환골재 콘크리트의 압축강도와 크리프계수와의 관계는 ${\sigma}_c=-30CF+404$와 같은 선형성이 나타났다.

  • PDF