• 제목/요약/키워드: power-saving modes

검색결과 26건 처리시간 0.024초

IEEE 802.16e 단말의 저전력 모드 성능 평가에 관한 연구 (A Performance Analysis of Power Saving Modes on IEEE 802.16e Mobile Terminal)

  • 박재성;김범준
    • 한국통신학회논문지
    • /
    • 제31권8A호
    • /
    • pp.790-797
    • /
    • 2006
  • IEEE 802.16e 표준은 sleep 모드와 idle 모드의 두 저전력 모드를(power saving mode: PSM) 정의하고 있다. 이들은 모드 천이시 단말과 망간 상태 정보 유지 여부에 따라 소모 전력 측면에서 성능이 달라진다. 따라서 802.16e 단말의 전력 소모 최적화를 위해서는 각 기법의 성능에 영향을 주는 요소들을 모두 고려한 상세한 성능분석이 필요하다. 본 논문에서는 단말의 이동성과 호 사용 빈도를 고려하여 소모 전력 측면에서 두 PSM의 성능분석 모델을 제안하고, idle 모드가 전력 소모 측면에서 sleep 모드보다 우수하다는 것을 보인다. 또한 분석 결과와 모의실험과의 비교를 통해 제안한 분석 모델의 타당성을 검증하였다.

포아송 프로세스 모델링을 통한 셋톱박스 에너지 절감 성능 분석 (Performance Evaluation of Set-top Box Energy Saving using Poisson Process Modeling)

  • 김용호;김훈
    • 정보통신설비학회논문지
    • /
    • 제10권1호
    • /
    • pp.33-39
    • /
    • 2011
  • This paper considers a performance analysis of set-top box (STB) power saving schemes. STB converts the signal into content which is then displayed on the television (TV) screen, and there are typically two operation modes: on mode and stand-by mode. The total energy consumption (TEC), a typical measure of power consumption of STB, is defined by the sum of power consumption in each mode. Recently there are some works of STB power saving schemes that transit STB operation modes efficiently, and the mode transition time point of those schemes can be different. Thus it is required to develop a performance evaluation method that reflects mode transition time points of each scheme to get TEC correctly. This paper proposes a performance evaluation method for STB power consumption using Poisson process to consider the mode transition time point. By modeling STB mode transitions as events of Poisson process, the average time duration of STB mode is computed and accordingly the effect of power saving is evaluated. The performance evaluation result shows that the proposed method achieves 1 to 19% improvement in power consumption compared with a conventional performance evaluation method.

  • PDF

IEEE 802.16e 시스템 하향 링크 트래픽 상황을 고려한 Power Saving 메커니즘 성능 분석 (Performance Analysis on Power Saving Mechanisms in IEEE 802.16e Systems by Considering Downlink Traffic Conditions)

  • 양석철;한승우;유명식;신요안
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.311-316
    • /
    • 2005
  • The power saving mechanism of IEEE 802.16e operates in two modes; awake mode and sleep mode. While the user terminal transmits and receives packets in awake mode, it sleeps for a given interval to save the power consumption in sleep mode. The IEEE 802.16e specifies that the user terminal increases the sleep interval exponentially unless it has to wake up. In this paper, we analyze the performance of IEEE 802.16e power saving mechanism by considering down link traffic conditions. With the extensive simulations, we observe the trade-off between the power saving performance and the average packet delay. In addition, we observe that various performance parameters of IEEE 802.16e power saving mechanism are affected by the traffic patterns.

  • PDF

Cognitive Radio 환경을 고려한 에너지 효율적인 MAC 프로토콜 (An Energy-efficient MAC Protocol in Cognitive Radio Environment)

  • 김병부;이승형
    • 한국ITS학회 논문지
    • /
    • 제7권2호
    • /
    • pp.81-91
    • /
    • 2008
  • 현재 무선 환경통신에서 점차 고갈되어가는 주파수를 효율적으로 사용하기 위해서 새로운 접근 방법이 개발되었다. Cognitive Radio는 디바이스가 동작하는 환경의 정보에 근거하여 자신의 송수신 방법을 바꿀 수 있는 장비를 말한다. 현재 무선 모바일 디바이스를 대상으로 하는 무선통신표준들은 절전모드에 대해서 다루고 있으며, 대부분 전력절감을 위하여 데이터 송신과 수신에 대한 전원을 차단하는 방법을 이용한다. 하지만 Cognitive Radio 환경에서는 모든 디바이스들이 채널을 검색하기 위해서 Quiet Period를 두고 있으며, 기존의 에너지 절감 방법으로는 Cognitive Radio 환경에 응용하기에는 적합하지 않다. 본 논문에서는 Cognitive Radio 환경에서 무선 모바일 디바이스를 위한 에너지 효율적인 MAC 프로토콜을 제안하고, 시뮬레이션을 통하여 일반적으로 사용되는 에너지관리 방법과 제안한 방법을 비교하여 성능이 향상되었음을 확인한다.

  • PDF

Induction Heated Load Resonant Tank High Frequency Inverter with Asymmetrical Auxiliary Active Edge-Resonant Soft-Switching Scheme

  • Saha Bishwajit;Fathy Khairy;Kwon Soon-Kurl;Lee Hyun-Woo;Nakaoka Mutsuo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2006년도 전력전자학술대회 논문집
    • /
    • pp.200-202
    • /
    • 2006
  • In this paper, a novel type of auxiliary active snubbing circuit assisted quasi-resonant soft-switching pulse width modulation inverter is proposed for consumer induction heating equipments. The operation principle of this high frequency inverter is described using switching modes and equivalent circuits. This newly developed series resonant high frequency inverter can regulate its high frequency output AC power under a principle of constant frequency active edge resonant soft-switching commutation by asymmetrical PWM control system. The high frequency power regulation and actual power conversion efficiency characteristics of consumer induction heating (IH) products using the proposed soft-switching pulse width modulation (PWM) series load resonant high frequency inverter evaluated. The practical effectiveness and operating performance of high frequency inverter are discussion on the basis of simulation and experimental results as compared with the conventional soft-switching high frequency inverter.

  • PDF

전투함 하이브리드 전기추진 시스템의 PTO 운전모드 적용 및 연료절감 효과 연구 (A Study on the Adoption of Power Take Off Operation Mode and Fuel-Saving Effect in the Hybrid Electric Propulsion System for a Warship)

  • 김소연
    • 전력전자학회논문지
    • /
    • 제24권1호
    • /
    • pp.40-48
    • /
    • 2019
  • Hybrid electric propulsion systems (H-EPSs) are an intermediate step for integrated full electric propulsion warships. H-EPSs are a dynamic combination of mechanical and electrical propulsion systems to achieve the required mission performances. The system modes could adapt to meet the requirement of the various operation conditions of a warship. This paper presents a configuration and operating modes of H-EPSs considering the operation conditions of a destroyer class warship. The system has three propulsion modes, namely, motoring mode, generating mode [power take off (PTO) mode], and mechanical mode. The PTO mode requires a careful fuel efficiency analysis because the fuel consumption rate of propulsion engines may be low compared with the generator's engines depending on the loading power. Therefore, the calculation of fuel consumption according to the operating modes is performed in this study. Although the economics of the PTO mode depends on system cases, it has an advantage in that it ensures the reliability of electric power in case of blackout or minimum generator operation.

A Study on Variable Speed Generation System with Energy Saving Function

  • Dugarjav, Bayasgalan;Lee, Sang-Ho;Han, Dong-Hwa;Lee, Young-Jin;Choe, Gyu-Ha
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.137-143
    • /
    • 2013
  • This paper presents development of variable speed generation (VSG) system with energy saving function. The rubber tyred gantry crane (RTGC) requires the power from diesel-engine. Significant fuel savings by reducing the engine speed can be achieved, because all of operation modes except hoisting are required lower power than rated value of engine. When low speed operation output voltage of generator is decrease until acceptable range of motor driver inverters and auxiliary load supplier. According to power demand engine speed is varying from 20 to 60Hz, and voltage is varying between 210Vac and 480Vac. When idle mode or low power operation dc/dc converter operates by constant output voltage control and inverters dc site voltage is compensated by it. This paper proposed 3-phase interleaved boost converter which has the same structure as the commercially available 3-phase inverter and current sharing capability. 400kW interleaved converter is designed and a performance of converter is evaluated through several experiments with a RTGC system. Energy saving VSG system can cut down fuel consumption by 36% and 21.3% at idle and unidirectional load operations.

A Novel Power Frequency Changer Based on Utility AC Connected Half-Bridge One Stage High Frequency AC Conversion Principle

  • Saha Bishwajit;Koh Kang-Hoon;Kwon Soon-Kurl;Lee Hyun-Woo;Nakaoka Mutsuo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2006년도 전력전자학술대회 논문집
    • /
    • pp.203-205
    • /
    • 2006
  • This paper presents a novel soft-switching PWM utility frequency AC to high frequency AC power conversion circuit incorporating boost-half-bridge inverter topology, which is more suitable and acceptable for cost effective consumer induction heating applications. The operating principle and the operation modes are presented using the switching mode and the operating voltage and current waveforms. The performances of this high-frequency inverter using the latest IGBTs are illustrated, which includes high frequency power regulation and actual efficiency characteristics based on zero voltage soft switching (ZVS) operation ranges and the power dissipation as compared with those of the previously developed high-frequency inverter. In addition, a dual mode control scheme of this high frequency inverter based on asymmetrical pulse width modulation (PWM) and pulse density modulation (PDM) control scheme is discussed in this paper in order to extend the soft switching operation ranges and to improve the power conversion efficiency at the low power settings. The power converter practical effectiveness is substantially proved based on experimental results from practical design example.

  • PDF

A Novel Utility AC Frequency to High Frequency AC Power Converter with Boosted Half-Bridge Single Stage Circuit Arrangement

  • Saha, Bishwajit;Kwon, Soon-Kurl;Koh, Hee-Seog;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2006년도 춘계학술대회 논문집
    • /
    • pp.387-390
    • /
    • 2006
  • This paper presents a novel soft-switching PWM utility frequency AC to high frequency AC power conversion circuit Incorporating boost-half-bridge inverter topology, which is more suitable and acceptable for cost effective consumer induction heating applications. The operating principle and the operation modes are presented using the switching mode and the operating voltage and current waveforms. The performances of this high-frequency inverter using the latest IGBTs are illustrated, which includes high frequency power regulation and actual efficiency characteristics based on zero voltage soft switching (ZVS) operation ranges and the power dissipation as compared with those of the previously developed high-frequency inverter. In addition, a dual mode control scheme of this high frequency inverter based on asymmetrical pulse width modulation (PWM) and pulse density modulation (PDM) control scheme is discussed in this paper in order to extend the soft switching operation ranges and to improve the power conversion efficiency at the low power settings. The power converter practical effectiveness is substantially proved based on experimental results from practical design example.

  • PDF

Independent Metering Valve: A Review of Advances in Hydraulic Machinery

  • Nguyen, Thanh Ha;Do, Tri Cuong;Ahn, Kyoung Kwan
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권4호
    • /
    • pp.54-71
    • /
    • 2020
  • In light of the environmental challenges, energy-saving strategies are currently under investigation in the construction industry. This paper focuses on the energy-saving method used in the hydraulic system based on independent metering (IM) technologies, which can overcome the lost energy at the main control valve of the conventional electrohydraulic servo system. By scientifically arranging the proportional valves, the IM system can individually control the flow rate of the inlet and the outlet ports of the actuators. In addition, the IMV system can be used to effectively regenerate energy under different operating modes, thereby saving more energy than conventional hydraulic systems. Therefore, the IMV system has a great potential to improve the energy efficiency of hydraulic machinery. The overall IMV system, including the configuration, proportional valve, operation mode, and the control strategy is introduced via state-of-the-art hydraulic technologies. Finally, the challenges of IM systems are discussed to provide researchers with directions for future development.