• Title/Summary/Keyword: power-law model

Search Result 644, Processing Time 0.025 seconds

Application of nonlocal elasticity theory on the wave propagation of flexoelectric functionally graded (FG) timoshenko nano-beams considering surface effects and residual surface stress

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad;Arani, M.R. Ghorbanpour
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.141-153
    • /
    • 2019
  • This research deals with wave propagation of the functionally graded (FG) nano-beams based on the nonlocal elasticity theory considering surface and flexoelectric effects. The FG nano-beam is resting in Winkler-Pasternak foundation. It is assumed that the material properties of the nano-beam changes continuously along the thickness direction according to simple power-law form. In order to include coupling of strain gradients and electrical polarizations in governing equations of motion, the nonlocal non-classical nano-beam model containg flexoelectric effect is used. Also, the effects of surface elasticity, dielectricity and piezoelectricity as well as bulk flexoelectricity are all taken into consideration. The governing equations of motion are derived using Hamilton principle based on first shear deformation beam theory (FSDBT) and also considering residual surface stresses. The analytical method is used to calculate phase velocity of wave propagation in FG nano-beam as well as cut-off frequency. After verification with validated reference, comprehensive numerical results are presented to investigate the influence of important parameters such as flexoelectric coefficients of the surface, bulk and residual surface stresses, Winkler and shear coefficients of foundation, power gradient index of FG material, and geometric dimensions on the wave propagation characteristics of FG nano-beam. The numerical results indicate that considering surface effects/flexoelectric property caused phase velocity increases/decreases in low wave number range, respectively. The influences of aforementioned parameters on the occurrence cut-off frequency point are very small.

Sensitivity analysis of input variables to establish fire damage thresholds for redundant electrical panels

  • Kim, Byeongjun;Lee, Jaiho;Shin, Weon Gyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.84-96
    • /
    • 2022
  • In the worst case, a temporary ignition source (also known as transient combustibles) between two electrical panels can damage both panels. Mitigation strategies for electrical panel fires were previously developed using fire modeling and risk analysis. However, since they do not comply with deterministic fire protection requirements, it is necessary to analyze the boundary values at which combustibles may damage targets depending on various factors. In the present study, a sensitivity analysis of input variables related to the damage threshold of two electrical panels was performed for dimensionless geometry using a Fire Dynamics Simulator (FDS). A new methodology using a damage evaluation map was developed to assess the damage of the electrical panel. The input variables were the distance between the electrical panels, the vertical height of the fuel, the size of the fire, the wind speed and the wind direction. The heat flux was determined to increase as the vertical distance between the fuel and the panel decreased, and the largest heat flux was predicted when the vertical separation distance divided by one half flame length was 0.3-0.5. As the distance between the panels increases, the heat flux decreases according to the power law, and damage can be avoided when the distance between the fuel and the panel is twice the length of the panel. When the wind direction is east and south, to avoid damage to the electrical panel the distance must be increased by 1.5 times compared to no wind. The present scale model can be applied to any configuration where combustibles are located between two electrical panels, and can provide useful guidance for the design of redundant electrical panels.

Intensive Monitoring Survey of Nearby Galaxies (IMSNG) : Constraints on the Progenitor System of a Type Ia Supernova SN 2019ein from Its Early Light Curve

  • Lim, Gu;Im, Myungshin;Kim, Dohyeong;Paek, Gregory S.H.;Choi, Changsu;Kim, Sophia;Hwang, Sungyong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.36.1-36.1
    • /
    • 2020
  • The progenitor of Type Ia supernovae (SNe Ia) is mainly believed to be a carbon/oxygen white dwarf (WD) with non-degenerate (single degenerate) or another WD companion (double degenerate). However, there is little observational evidence of their progenitor system. Recent studies suggest that shock-breakout cooling emission after the explosion can constrain the size of the progenitor system. To do so, we obtained a optical/Near-IR light curve of SN 2019ein, a normal but slightly sub-luminous type Ia supernova, from the very early phase using our high-cadence observation of Intensive Monitoring Survey of Nearby Galaxies (IMSNG). Assuming the expanding fireball model, the simple power-law fitting of the early part of the light curve gives power indices of 1.91 (B) and 2.09 (R) implying radioactive decay of 56Ni is the dominant energy source. By comparison with the expected light curve of the cooling emission, the early observation provides us an upper limit of the companion size of R∗≤1R⊙. This result suggests that we can exclude a large companion such as red giants, which is consistent with the previous study.

  • PDF

Analysis of Static Crack Growth in Asphalt Concrete using the Extended Finite Element Method (확장유한요소법을 이용한 아스팔트의 정적균열 성장 분석)

  • Zi, Goangseup;Yu, Sungmun;Thanh, Chau-Dinh;Mun, Sungho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4D
    • /
    • pp.387-393
    • /
    • 2010
  • This paper studies static crack growth of asphalt pavement using the extended finite element method (XFEM). To consider nonlinear characteristics of asphalt concrete, a viscoelastic constitutive equation using the Maxwell chain is used. And a linear cohesive crack model is used to regularize the crack. Instead of constructing the viscoelastic constitutive law from the Prony approximation of compliance and retardation time measured experimentally, we use a smooth log-power function which optimally fits experimental data and is infinitely differentiable. The partial moduli of the Maxwell chain from the log-power function make analysis easy because they change more smoothly in a more stable way than the ordinary method such as the least square method. Using the developed method, we can simulates the static crack growth test results satisfactorily.

Static buckling analysis of bi-directional functionally graded sandwich (BFGSW) beams with two different boundary conditions

  • Berkia, Abdelhak;Benguediab, Soumia;Menasria, Abderrahmane;Bouhadra, Abdelhakim;Bourada, Fouad;Mamen, Belgacem;Tounsi, Abdelouahed;Benrahou, Kouider Halim;Benguediab, Mohamed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.503-517
    • /
    • 2022
  • This paper presents the mechanical buckling of bi-directional functionally graded sandwich beams (BFGSW) with various boundary conditions employing a quasi-3D beam theory, including an integral term in the displacement field, which reduces the number of unknowns and governing equations. The beams are composed of three layers. The core is made from two constituents and varies across the thickness; however, the covering layers of the beams are made of bidirectional functionally graded material (BFGSW) and vary smoothly along the beam length and thickness directions. The power gradation model is considered to estimate the variation of material properties. The used formulation reflects the transverse shear effect and uses only three variables without including the correction factor used in the first shear deformation theory (FSDT) proposed by Timoshenko. The principle of virtual forces is used to obtain stability equations. Moreover, the impacts of the control of the power-law index, layer thickness ratio, length-to-depth ratio, and boundary conditions on buckling response are demonstrated. Our contribution in the present work is applying an analytical solution to investigate the stability behavior of bidirectional FG sandwich beams under various boundary conditions.

Development and Application of Diffusion Wave-based Distributed Runoff Model (확산파에 기초한 분포형 유출모형의 개발 및 적용)

  • Lee, Min-Ho;Yoo, Dong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.553-563
    • /
    • 2011
  • According to the improvement of computer's performance, the development of Geographic Information System (GIS), and the activation of offering information, a distributed model for analyzing runoff has been studied a lot in recently years. The distribution model is a theoretical and physical model computing runoff as making target basin subdivided parted. In the distributed model developed by this study, the volume of runoff at the surface flow is calculated on the basis of the parameter determined by landcover data and a two-dimensional diffusion wave equation. Most of existing runoff models compute velocity and discharge of flow by applying Manning-Strickler's mean velocity equation and Manning's roughness coefficient. Manning's roughness coefficient is not matched with dimension and ambiguous at computation; Nevertheless, it is widely used in because of its convenience for use. In order to improve those problems, this study developed the runoff model by applying not only Manning-Strickler's equation but also Chezy's mean velocity equation. Furthermore, this study introduced a power law of exponential friction factor expressed by the function of roughness height. The distributed model developed in this study is applied to 6 events of fan-shape basin, oblong shape test basin and Anseongcheon basin as real field conditions. As a result the model is found to be excellent in comparison with the exiting runoff models using for practical engineering application.

An Analysis of Insurance Crimes: The Case of Blackmail in Automobile Accidents (보험사기범죄에 대한 분석 고의 교통사고 유도 - 합의금 요구 사건을 중심으로)

  • Yang, Chae-Yeol
    • The Korean Journal of Financial Management
    • /
    • v.23 no.1
    • /
    • pp.227-242
    • /
    • 2006
  • This paper analyzes insurance crimes using a game theoretic model. In blackmailing cases involving automobile accidents, insurance criminals deliberately induce innocent drivers(victims) to commit a moving violation such as crossing over the center dividing yellow line, and collide with the victims. After the collision, the criminals and the victims effectively engage in a bargaining game over the amount of the settlement for the damage. Because the penalty for that kind of moving violation is very severe (even criminally prosecuted), the victims do not have much bargaining power. Exploiting the weak bargaining power of the victims, the criminals demand and receive huge compensation (including settlement) from the victims. In the model, it is shown that under the current law agents have perverse incentives leading to insurance crimes. The criminals have incentive to induce car collisions and extract huge settlement from the victims. Based on the analysis, it is suggested that lowering the severity of penalty for certain kind of violation may be needed to prevent insurance crimes, in addition to increasing the crime investigation activities and strengthening punishment for insurance criminals.

  • PDF

Studies on the Extraction Rate of Oil from Sardine, Sardinops melanosticta (정어리 지질의 추출속도에 관한 연구)

  • YANG Hyun-Seok;LEE Keun-Tai;BYUN Dae-Seok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.1
    • /
    • pp.40-46
    • /
    • 1984
  • The extraction ratio of oil using solvent from the muscle of sardine, Sardinops melanosticta, was studied. The results were critically evaluated in the light of the theory of oil diffusion in a porous solid model. In addition the effect of temperature and moisture on the extraction rate was examined. Sardine muscle was prepared in a manner to meet the conditions required by the diffusion theory from Fick's law. The results of the model were well coincidenced to the theory derived from Fick's law. Diffusion constants at the direction to muscle fiber($D_1$) and at direction perpendicular to fiber($D_2=D_3$) when extracted at $45^{\circ}C$ were $8.16{\times}10^{-8}cm^2/sec\;and\;4.12{\times}10^{-8}cm^2/sec$, respectivly. The extraction rate was linearly propotional to absolute temperature(T) by eleventh power under the constant condition of moisture contents and muscle size. A comparison of the experiments with the highest($74.22\%$) and the lowest ($32.48\%$) moisture indicated that difference of $1\%$ in moisture contents caused to change the slope(K) of the extraction curve $0.53{\times}10^{-6}sec^{-1}$ approximately.

  • PDF

Static stability and of symmetric and sigmoid functionally graded beam under variable axial load

  • Melaibari, Ammar;Khoshaim, Ahmed B.;Mohamed, Salwa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.671-685
    • /
    • 2020
  • This manuscript presents impacts of gradation of material functions and axial load functions on critical buckling loads and mode shapes of functionally graded (FG) thin and thick beams by using higher order shear deformation theory, for the first time. Volume fractions of metal and ceramic materials are assumed to be distributed through a beam thickness by both sigmoid law and symmetric power functions. Ceramic-metal-ceramic (CMC) and metal-ceramic-metal (MCM) symmetric distributions are proposed relative to mid-plane of the beam structure. The axial compressive load is depicted by constant, linear, and parabolic continuous functions through the axial direction. The equilibrium governing equations are derived by using Hamilton's principles. Numerical differential quadrature method (DQM) is developed to discretize the spatial domain and covert the governing variable coefficients differential equations and boundary conditions to system of algebraic equations. Algebraic equations are formed as a generalized matrix eigenvalue problem, that will be solved to get eigenvalues (buckling loads) and eigenvectors (mode shapes). The proposed model is verified with respectable published work. Numerical results depict influences of gradation function, gradation parameter, axial load function, slenderness ratio and boundary conditions on critical buckling loads and mode-shapes of FG beam structure. It is found that gradation types have different effects on the critical buckling. The proposed model can be effective in analysis and design of structure beam element subject to distributed axial compressive load, such as, spacecraft, nuclear structure, and naval structure.

A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams

  • Bouafia, Khadra;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Benzair, Abdelnour;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.115-126
    • /
    • 2017
  • In this paper, size dependent bending and free flexural vibration behaviors of functionally graded (FG) nanobeams are investigated using a nonlocal quasi-3D theory in which both shear deformation and thickness stretching effects are introduced. The nonlocal elastic behavior is described by the differential constitutive model of Eringen, which enables the present model to become effective in the analysis and design of nanostructures. The present theory incorporates the length scale parameter (nonlocal parameter) which can capture the small scale effect, and furthermore accounts for both shear deformation and thickness stretching effects by virtue of a hyperbolic variation of all displacements through the thickness without using shear correction factor. The material properties of FG nanobeams are assumed to vary through the thickness according to a power law. The neutral surface position for such FG nanobeams is determined and the present theory based on exact neutral surface position is employed here. The governing equations are derived using the principal of minimum total potential energy. The effects of nonlocal parameter, aspect ratio and various material compositions on the static and dynamic responses of the FG nanobeam are discussed in detail. A detailed numerical study is carried out to examine the effect of material gradient index, the nonlocal parameter, the beam aspect ratio on the global response of the FG nanobeam. These findings are important in mechanical design considerations of devices that use carbon nanotubes.