• 제목/요약/키워드: power-law liquid

검색결과 35건 처리시간 0.03초

Effects of Geometry and Operating Fluid on the Expansion Behavior of Liquid-Solid Fluidized Beds

  • Mohsen Mozafari-Shamsi;Alireza Malooze;Mohammad Sefid;Mostafa Soroor;Ehsan Mehrabi Gohari
    • Korean Chemical Engineering Research
    • /
    • 제61권2호
    • /
    • pp.312-321
    • /
    • 2023
  • Fluidized beds have been widely used in industrial applications, which in most of them, the operating fluid is non-Newtonian. In this study, the combination of the lattice Boltzmann method (LBM) and the smoothed profile method has been developed for non-Newtonian power-law fluids. The validation of the obtained model were investigated by experimental correlations. This model has been used for numerical studying of changing the operating fluid and geometrical parameters on the expansion behavior in liquid-solid beds with both Newtonian and non-Newtonian fluids. Investigations were performed for seven different geometries, one Newtonian, and two non-Newtonian fluids. The power-law index was in the range of 0.8 to 1, and the results for the Newtonian fluidized beds show more porosity than the non-Newtonian ones. Furthermore, increasing the power-law index resulted in enhancing the bed porosity. On the other hand, bed porosity was decreased by increasing the initial bed height and the density of the solid particles. Finally, the porosity ratio in the bed was decreased by increasing the solid particle diameter.

Empirical Correlations for Penetration Height of Liquid Jet in Uniform Cross Flow - A Review

  • No, Soo-Young
    • 한국분무공학회지
    • /
    • 제16권4호
    • /
    • pp.176-185
    • /
    • 2011
  • The empirical correlations for the prediction of penetration height of liquid jet in crossflow are reviewed and classified in this study. Around thirty different correlations had been proposed by many investigators. It has generally known that the penetration height of a liquid jet in a cross-flow is a function of the liquid to air momentum flux ratio and the normalized downstream distance from the injector. However, several researchers incorporated the Weber number, liquid-to-water or air viscosity ratio, pressure ratio or Reynolds number, temperature ratio in the empirical correlations. The existing correlations can be grouped as correlations in a power-law, logarithmic, and exponential forms, respectively. Correlations in a power-law form can be further classified as three groups such as basic form, Weber number form and other parameters form. It should be pointed out that correlations in a logarithmic form in terms of Weber number or any other parameters could not be found. Universal correlation has still not been established due to the significant discrepancies between various correlations suggested to date. Several of the studies reported the significant discrepancies of predicted values by the existing correlations. The possible reasons for discrepancies will be summarized as measurement technique, assumptions made in defining terms in the liquid to air momentum flux ratio, difficulties in defining the boundaries of the liquid jets, and nozzle/injector geometry. Evaluation of validity for the correlations proposed recently by several investigators is essentially required. Those include eight power-law forms, two logarithmic forms, and one exponential form.

Deformation of multiple non-Newtonian drops in the entrance region

  • Kim, See-Jo;Kim, Sang-Dae;Youngdon Kwon
    • Korea-Australia Rheology Journal
    • /
    • 제15권2호
    • /
    • pp.75-82
    • /
    • 2003
  • In this study, with the finite element method we numerically investigate the deformation of liquid drops surrounded by Newtonian or non-Newtonian viscous medium in the axisymmetric contraction flow. 1, 2 or 4 Newtonian or non-Newtonian drops are considered and the truncated power-law model is applied In order to describe non-Newtonian viscous behavior for both fluids. In this type of flow the drop exhibits considerably large deformation, and thus techniques of unstructured mesh generation and auto-remeshing are employed to accurately express the fluid mechanical behavior. We examine the deformation pattern of liquid drops with viscosity dependence different from that of the surrounding medium and also explain their interactions by comparing relative position or speed of drop front.

The impacts of thermophoresis via Cattaneo-Christov heat flux model

  • Ahmad, Manzoor;Hussain, Muzamal;Khadimallah, Mohamed A.;Ayed, Hamdi;Taj, Muhammad;Alshoaibi, Adil
    • Computers and Concrete
    • /
    • 제29권4호
    • /
    • pp.255-262
    • /
    • 2022
  • The present study investigates the effects of Cattaneo-Christov thermal effects of stagnation point in Walters-B nanofluid flow through lubrication of power-law fluid by taking the slip at the interfacial condition. The impacts of thermophoresis and Brownian motions are further accounted. The fluid impinging orthogonally on the surface is due to power-law slim coating liquid. The generalized newtonian fluid equation is used that obeys the power law constitutive equation to model our problem. The effect of velocity profiles, temperature for different values of n are investigated. The prandtl on the temperature distribution for partial slip and no slip cases is also observed. It is found that for larger values of prandtl number thermal diffusivity of fluid reduces and it enhance the decrease in temperature and boundary layer thickness.

Modeling reaction injection molding process of phenol-formaldehyde resin filled with wood dust

  • Lee, Jae-Wook;Kwon, Young-Don;Leonov, A.I.
    • Korea-Australia Rheology Journal
    • /
    • 제20권2호
    • /
    • pp.59-63
    • /
    • 2008
  • A theoretical model was developed to describe the flow behavior of a filled polymer in the packing stage of reaction injection molding and predict the residual stress distribution of thin injection-molded parts. The model predictions were compared with experiments performed for phenol-formaldehyde resin filled with wood dust and cured by urotropine. The packing stage of reaction injection molding process presents a typical example of complex non-isothermal flow combined with chemical reaction. It is shown that the time evolution of pressure distribution along the mold cavity that determines the residual stress in the final product can be described by a single 1D partial differential equation (PDE) if the rheological behavior of reacting liquid is simplistically described by the power-law approach with some approximations made for describing cure reaction and non-isothermality. In the formulation, the dimensionless time variable is defined in such a way that it includes all necessary information on the cure reaction history. Employing the routine separation of variables made possible to obtain the analytical solution for the nonlinear PDE under specific initial condition. It is shown that direct numerical solution of the PDE exactly coincides with the analytical solution. With the use of the power-law approximation that describes highly shear thinning behavior, the theoretical calculations significantly deviate from the experimental data. Bearing in mind that in the packing stage the flow is extremely slow, we employed in our theory the Newtonian law for flow of reacting liquid and described well enough the experimental data on evolution of pressure.

수직관 내 순수 증기의 층류 액막 응축 모델 (Laminar Film Condensation Model of Pure Steam in a Vertical Tube)

  • 김동억
    • 한국유체기계학회 논문집
    • /
    • 제17권3호
    • /
    • pp.33-40
    • /
    • 2014
  • In this study, a new model for calculating the liquid film thickness and condensation heat transfer coefficient in a vertical condenser tube is proposed by considering the effects of gravity, liquid viscosity, and vapor flow in the core region of the flow. In order to introduce the radial velocity profile in the liquid film, the liquid film flow was regarded to be in Couette flow dragged by the interfacial velocity at the liquid-vapor interface. For the calculation of the interfacial velocity, an empirical power-law velocity profile had been introduced. The resulting liquid film thickness and heat transfer coefficient obtained from the proposed model were compared with the experimental data from other experimental study and the results obtained from the other condensation models. In conclusion, the proposed model physically explained the liquid film thinning effect by the vapor shear flow and predicted the condensation heat transfer coefficient from experiments reasonably well.

Rheological properties of some thermotropic liquid crystalline polymers

  • Fan, Yurun;Dai, Shaocong;Tanner, Roger I.
    • Korea-Australia Rheology Journal
    • /
    • 제15권3호
    • /
    • pp.109-115
    • /
    • 2003
  • Rheometry testing and the DSC measurement of five thermotropic liquid crystalline polymers (TLCP) have been carried out. The dynamic viscosities of the five TLCPs show a typical shear-thinning behaviour obeying the power-law with the power indices from 0.2 to 0.3. When these TLCPs are heated above the melting temperatures determined by the DSC measurements, the dynamic viscosities first rapidly decrease by 2~3 orders of magnitude then level off, finally increase gradually with the further increasing of temperature. The steady shearing exhibited the same behaviour as the dynamic shearing, but serious edge fracture of material slippage out of the plates occurred. The abnormal temperature dependence of the viscosities can be explained by the nematic-isotropic transition. By using the concept of activation energy, we propose a simple model which can fit the shear-thinning behaviour quite well and predict qualitatively correct temperature effects.

PREPARATION OF POLY(ETHYLENE-CO-VINYL ALCOHOL) MEMBRANE VIA THERMALLY INDUCED PHASE SEPARATION

  • Matsuyama, Hideto;Shang, Mengxian;Teramoto, Masaaki
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2004년도 Proceedings of the second conference of aseanian membrane society
    • /
    • pp.74-77
    • /
    • 2004
  • Porous membranes were prepared via thermally induced phase separation (TIPS) of (ethylene-co-vinyl alcohol) (EVOH)/glycerol mixtures. The liquid-liquid (L-L) phase boundaries are shifted to higher temperature when the ethylene contents in EVOH increase. Moreover, the kinetic study proved that the growth of droplets formed by the general liquid-liquid (L-L) phase separation obeyed a power-law scaling relationship in the later stage of spinodal decomposition (SD). A new phase separation mechanism was presented, in which the L-L phase separation could be resulted from the crystallization. The hollow fiber membranes were prepared. The membranes showed asymmetric structures with skin layer near the outer surface, the larger pores just below the skin layer and the smaller pores near the inner surface. The effect of ethylene content (EC) in EVOH, cooling water bath temperature and take-up speed on membrane performance was investigated.

  • PDF

액상과 고상의 유동현상을 고려한 레오로지 성형공정의 표면결함예측을 위한 응고해석 (Solidification Analysis for Surface Defect Prediction of Rheology Forming Process Considering Flow Phenomena of Liquid and Solid Region)

  • 서판기;정영진;강충길
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.1971-1981
    • /
    • 2002
  • Two-dimensional solidification analysis during rheology forming process of semi-solid aluminum alloy has been studied. Two-phase flow model to investigate the velocity field and temperature distribution is proposed. The proposed mathematical model is applied to the die shape of the two types. To calculate the velocities and temperature fields during rheology forming process, the each governing equations correspondent to the liquid and solid region are adapted. Therefore, each numerical model considering the solid and liquid coexisting region within the semi-solid material have been developed to predict the defects of rheology forming parts. The Arbitrary Boundary Maker And Cell(ABMAC) method is employed to solve the two-Phase flow model of the Navier-Stokes equation. Theoretical model basis of the two-phase flow model is the mixture rule of solid and liquid phases. This approach is based on using the liquid and solid viscosity. The Liquid viscosity is pure liquid state value, however solid viscosity is considered as a function of the shear rate, solid fraction and power law curves.

저고상율 소재의 유동 및 응고현상을 고려한 레올로지 성형공정해석 (Process Analysis for Rheology Forming Considering Flow and Solidification Phenomena in Lower Solid Fraction)

  • 정영진;조호상;강충길
    • 한국정밀공학회지
    • /
    • 제18권9호
    • /
    • pp.156-164
    • /
    • 2001
  • Two-dimensional solidification analysis during rheology forming process of semi-solid aluminum alloy has been studied. Two-phase fluid flow model to investigate the velocity field and temperature distribution is proposed. The proposed mathematical model is applied to the die shape of the two types. To calculate the velocity and temperature fields during rheology forming process, the earth governing equation correspondent to the liquid and solid region are adapted. Therefore, each numerical models considering the solid and liquid region existing within the semi-solid material have been developed to predict the deflect of rheology forming gnarls. The Arbitrary Boundary Maker And Cell (ABMAC) method is employed to solve the two-phase flow model of the Navier-Stokes equation. Theoretical model on the basis of the two-phase flow model is the mixture rule of solid and liquid phases. This approach is based on the liquid and solid viscosity. The liquid viscosity is pure liquid state value, however solid viscosity is considered as a function of the shear rate, solid fraction and power law curves.

  • PDF