• Title/Summary/Keyword: power-efficient design

Search Result 1,044, Processing Time 0.165 seconds

A High-speed/Low-power OFDM Frequency Offset Synchronization Compensation Block Design (OFDM 주파수 옵셋 동기화부 보상 블록의 저전력 설계)

  • Han, Jae-Woong;Jang, Young-Beom
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.201-202
    • /
    • 2008
  • In this paper, an efficient frequency offset compensation design for OFDM(Orthogonal Frequency Division Multiplexing) is proposed. The conventional CORDIC(COordinate Rotation Digital Computer) algorithm for frequency offset compensation utilizes CORDIC hardware and complex multiplier. But, proposed structure utilizes only one CORDIC hardware.

  • PDF

Energy Efficiency Localization System Based On Wireless Sensor Network (무선 센서 네트워크 기반의 에너지 효율적인 위치 탐색 시스템)

  • Jung, Won-Soo;Oh, Young-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.497-498
    • /
    • 2007
  • The most of important thing when we design a Wireless Sensor Network is resources. You have to consider energy efficient operation When you design Wireless Sensor Network. Because Sensor devices have a limited resources. In this paper, we proposed energy efficiency localization technique in Wireless Sensor Network. We used Cell ID technique for location search. This method can reduce power consumption and the network life time will be extension.

  • PDF

Long-Lasting and Highly Efficient TRIAC Dimming LED Driver with a Variable Switched Capacitor

  • Lee, Eun-Soo;Choi, Bo-Hwan;Nguyen, Duy Tan;Choi, Byeung-Guk;Rim, Chun-Taek
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1268-1276
    • /
    • 2016
  • A triode for alternating current (TRIAC) dimming light emitting diode (LED) driver, which adopts a variable switched capacitor for LED dimming and LED power regulation, is proposed in this paper. The proposed LED driver is power efficient, reliable, and long lasting because of the TRIAC switch that serves as its main switch. Similar to previous TRIAC dimmers for lamps, turn-on timing of a TRIAC switch can be controlled by a volume resistor, which modulates the equivalent capacitance of the proposed variable switched capacitor. Thus, LED power regulation against source voltage variation and LED dimming control can be achieved by the proposed LED driver while meeting the global standards for power factor (PF) and total harmonic distortion (THD). The long life and high power efficiency of the proposed LED driver make it appropriate for industrial lighting applications, such as those for streets, factories, parking garages, and emergency stairs. The detailed analysis of the proposed LED driver and its design procedure are presented in this paper. A prototype of 80 W was fabricated and verified by experiments, which showed that the efficiency, PF, and THD at Vs = 220 V are 93.8%, 0.95, and 22.5%, respectively; 65 W of LED dimming control was achieved with the volume resistor, and the LED power variation was well mitigated below 3.75% for 190 V < Vs < 250 V.

A Minimal Resource High-Level Synthesis Algorithm for Low Power Design Automation (저 전력 설계 자동화를 위한 최소 자원 상위 레벨 합성 알고리즘)

  • Lin, Chi-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.3
    • /
    • pp.95-99
    • /
    • 2008
  • This paper proposes a new minimal resource high-level synthesis algorithm for low power design automation. The proposed algorithm executes an efficient approach to minimize the power consumption of the functional units in a circuit during the high level synthesis. In this paper, we visit all control steps one by one to reduce the switching activity in CDFG. The register sharing algorithm determines the minimum register after the life time analysis of all variable. According to property of input signal for functional unit, the proposed method visits all control step one by one and determines the resource allocation with minimal power consumption at each control step in a greedy fashion. The effect of the proposed algorithm has been proved through various filter benchmark to adopt a new scheduling and allocation algorithm considering the low rover.

  • PDF

A Dynamic Rating System for Power Cables (I) - Real Time CTM(Conductor Temperature Monitoring) (전력 케이블 실시간 허용전류산정 시스템에 관한 연구 (I) - 실시간 도체 온도 추정 시스템)

  • 남석현;이수길;홍진영;김정년;정성환
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.7
    • /
    • pp.414-420
    • /
    • 2003
  • The domestic needs for larger capability of power sources are increasing to cope with the expanding power load which results from the industrial developments & the progressed life style. In summer, the peak load is mainly due to the non-industrial reasons such as air-conditioners and other cooling equipments. To cover the concentrated peak load in stable, the power transmission lines should be more constructed and efficiently operated. The ampacity design of the underground cable system is generally following international standards such as IEC287, IEC60853 and JCS168 which regards the shape of 100% daily full power loads. It is not so efficient to neglect the real shapes of load curves generally below 60~70% of full load. The dynamic (real time) rating system tends to be used with the measured thermal parameters which make it possible to calculate the maximum ampacity within required periods. In this paper, the CTM(Conductor Temperature Monitoring) which is the base of dynamic rating systems for tunnel environment is proposed by a design of lumped thermal network ($\pi$-type thermal model) and distribution temperature sensor attached configuration, including the estimation results of its performances by load cycle test on 345kV single phase XLPE cable.

Improved P&O algorithm for rapidly changing insolation (일사량 급변에 대한 P&O 알고리즘의 개선)

  • kang A, J.;Kim T. W.;Kim H. S.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.117-120
    • /
    • 2004
  • As the maximum power operating point (MPOP) of photovoltaic (PV) power generation systems changes with varying atmospheric conditions such as solar radiation and temperature, an important consideration in the design of efficient PV system is to track the MPOP correctly. Although the efficiency of these Maximum Power Point Tracking algorithms is usually high, it drops noticeably in case of rapidly changing atmospheric conditions. This paper describes common MPPT control algorithm: Constant Voltage Control, Perturbation and Observation(P&O), Incremental Conductance (IncCnd) and proposes a new MPPT algorithm based on P&O algorithm. The conception and control principles of the proposed MPPT method are explained in detail and its validity of the proposed method is verified through several simulated results. As it doesn't use digital signal processor, this MPPT method has the merits of both a cost efficiency and a simple control circuit design. Therefore, it is considered that the proposed MPPT method is proper to low power, low cost PV applications.

  • PDF

A Study on SSDP protocol based IoT / IoL Device Discovery Algorithm for Energy Harvesting Interworking Smart Home

  • Lee, Jonghyeok;Han, Jungdo;Cha, Jaesang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.7-12
    • /
    • 2018
  • The spread of IoT (Internet of Things) technology that connects objects based on wired / wireless networks is accelerating, and IoT-based smart home technology that constitutes a super connected network connecting sensors and home appliances existing inside and outside the home is getting popular. In addition, demand for alternative energy technologies such as photovoltaic power generation is rapidly increasing due to rapid increase of consumption of energy resources. Recently, small solar power systems for general households as well as large solar power systems for installation in large buildings are being introduced, but they are effectively implemented due to limitations of small solar panels and lack of power management technology. In this paper, we have studied smart home structure and IoT / IoL device discovery algorithm for energy harvesting system based on photovoltaic power generation, It is possible to construct an efficient smart home system for device control.

Kinematic Design of High-Efficient Rotational Triboelectric Nanogenerator (고효율 회전형 정전 나노 발전기의 기구학적 설계)

  • Jihyun Lee;Seongmin Na;Dukhyun Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.106-111
    • /
    • 2024
  • A triboelectric nanogenerator is a promising energy harvester operated by the combined mechanism of electrostatic induction and contact electrification. It has attracting attention as eco-friendly and sustainable energy generators by harvesting wasting mechanical energies. However, the power generated in the natural environment is accompanied by low frequencies, so that the output power under such input conditions is normally insufficient amount for a variety of industrial applications. In this study, we introduce a non-contact rotational triboelectric nanogenerator using pedaling and gear systems (called by P-TENG), which has a mechanism that produces high power by using rack gear and pinion gear when a large force by a pedal is given. We design the system can rotate the shaft to which the rotor is connected through the conversion of vertical motion to rotational motion between the rack gear and the pinion gear. Furthermore, the system controls the one directional rotation due to the engagement rotation of the two pinion gears and the one-way needle roller bearing. The TENG with a 2 mm gap between the rotor and the stator produces about the power of 200 ㎼ and turns on 82 LEDs under the condition of 800 rpm. We expect that P-TENG can be used in a variety of applications such as operating portable electronics or sterilizing contaminated water.

CONCEPTUAL STRUCTURAL DESIGN AND COMPARATIVE POWER SYSTEM ANALYSIS OF OZONE DYNAMICS INVESTIGATION NANO-SATELLITE (ODIN)

  • Park, Nuri;Hwang, Euidong;Kim, Yeonju;Park, Yeongju;Kang, Deokhun;Kim, Jonghoon;Hong, Ik-seon;Jo, Gyeongbok;Song, Hosub;Min, Kyoung Wook;Yi, Yu
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.1
    • /
    • pp.9-16
    • /
    • 2021
  • The Ozone Dynamics Investigation Nano-Satellite (ODIN) is a CubeSat design proposed by Chungnam National University as contribution to the CubeSat Competition 2019 sponsored by the Korean Aerospace Research Institute (KARI). The main objectives of ODIN are (1) to observe the polar ozone column density (latitude range of 60° to 80° in both hemispheres) and (2) to investigate the chemical dynamics between stratospheric ozone and ozone depleting substances (ODSs) through spectroscopy of the terrestrial atmosphere. For the operation of ODIN, a highly efficient power system designed for the specific orbit is required. We present the conceptual structural design of ODIN and an analysis of power generation in a sun synchronous orbit (SSO) using two different configurations of 3U solar panels (a deployed model and a non-deployed model). The deployed solar panel model generates 189.7 W through one day which consists of 14 orbit cycles, while the non-deployed solar panel model generates 152.6 W. Both models generate enough power for ODIN and the calculation suggests that the deployed solar panel model can generate slightly more power than the non-deployed solar panel model in a single orbit cycle. We eventually selected the non-deployed solar panel model for our design because of its robustness against vibration during the launch sequence and the capability of stable power generation through a whole day cycle.

A Study on Efficient Polynomial-Based Discrete Behavioral Modeling Scheme for Nonlinear RF Power Amplifier (비선형 RF 전력 증폭기의 효율적 다항식 기반 이산 행동 모델링 기법에 관한 연구)

  • Kim, Dae-Geun;Ku, Hyun-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1220-1228
    • /
    • 2010
  • In this paper, we suggest a scheme to develop an efficient discrete nonlinear model based on polynomial structure for a RF power amplifier(PA). We describe a procedure to extract a discrete nonlinear model such as Taylor series or memory polynomial by sampling the input and output signal of RF PA. The performance of the model is analyzed varying the model parameters such as sample rate, nonlinear order, and memory depth. The results show that the relative error of the model is converged if the parameters are larger than specific values. We suggest an efficient modeling scheme considering complexity of the discrete model depending on the values of the model parameters. Modeling efficiency index(MEI) is defined, and it is used to extract optimum values for the model parameters. The suggested scheme is applied to discrete modeling of various RF PAs with various input signals such as WCDMA, WiBro, etc. The suggested scheme can be applied to the efficient design of digital predistorter for the wideband transmitter.