• 제목/요약/키워드: power-Armendariz ring

검색결과 11건 처리시간 0.017초

A PROOF ON POWER-ARMENDARIZ RINGS

  • Kim, Dong Hwa;Ryu, Sung Ju;Seo, Yeonsook
    • Korean Journal of Mathematics
    • /
    • 제21권1호
    • /
    • pp.29-34
    • /
    • 2013
  • Power-Armendariz is a unifying concept of Armendariz and commutative. Let R be a ring and I be a proper ideal of R such that R/I is a power-Armendariz ring. Han et al. proved that if I is a reduced ring without identity then R is power-Armendariz. We find another direct proof of this result to see the concrete forms of various kinds of subsets appearing in the process.

ON NIL GENERALIZED POWER SERIESWISE ARMENDARIZ RINGS

  • Ouyang, Lunqun;Liu, Jinwang
    • 대한수학회논문집
    • /
    • 제28권3호
    • /
    • pp.463-480
    • /
    • 2013
  • We in this note introduce a concept, so called nil generalized power serieswise Armendariz ring, that is a generalization of both S-Armendariz rings and nil power serieswise Armendariz rings. We first observe the basic properties of nil generalized power serieswise Armendariz rings, constructing typical examples. We next study the relationship between the nilpotent property of R and that of the generalized power series ring [[$R^{S,{\leq}}$]] whenever R is nil generalized power serieswise Armendariz.

ON NILPOTENT POWER SERIES WITH NILPOTENT COEFFICIENTS

  • Kwak, Tai Keun;Lee, Yang
    • Korean Journal of Mathematics
    • /
    • 제21권1호
    • /
    • pp.41-53
    • /
    • 2013
  • Antoine studied conditions which are connected to the question of Amitsur of whether or not a polynomial ring over a nil ring is nil, introducing the notion of nil-Armendariz rings. Hizem extended the nil-Armendariz property for polynomial rings onto power-series rings, say nil power-serieswise rings. In this paper, we introduce the notion of power-serieswise CN rings that is a generalization of nil power-serieswise Armendariz rings. Finally, we study the nil-Armendariz property for Ore extensions and skew power series rings.

ON A RING PROPERTY GENERALIZING POWER-ARMENDARIZ AND CENTRAL ARMENDARIZ RINGS

  • CHA, HO JUN;JUNG, DA WOON;KIM, HONG KEE;KIM, JIN-A;LEE, CHANG IK;LEE, YANG;NAM, SANG BOK;RYU, SUNG JU;SEO, YEONSOOK;SUNG, HYO JIN;YUN, SANG JO
    • Korean Journal of Mathematics
    • /
    • 제23권3호
    • /
    • pp.337-355
    • /
    • 2015
  • We in this note consider a class of rings which is related to both power-Armendariz and central Armendariz rings, in the spirit of Armendariz and Kaplansky. We introduce central power-Armendariz as a generalization of them, and study the structure of central products of coefficients of zero-dividing polynomials. We also observe various sorts of examples to illuminate the relations between central power-Armendariz and related ring properties.

SKEW POLYNOMIAL RINGS OVER SEMIPRIME RINGS

  • Hong, Chan-Yong;Kim, Nam-Kyun;Lee, Yang
    • 대한수학회지
    • /
    • 제47권5호
    • /
    • pp.879-897
    • /
    • 2010
  • Y. Hirano introduced the concept of a quasi-Armendariz ring which extends both Armendariz rings and semiprime rings. A ring R is called quasi-Armendariz if $a_iRb_j$ = 0 for each i, j whenever polynomials $f(x)\;=\;\sum_{i=0}^ma_ix^i$, $g(x)\;=\;\sum_{j=0}^mb_jx^j\;{\in}\;R[x]$ satisfy f(x)R[x]g(x) = 0. In this paper, we first extend the quasi-Armendariz property of semiprime rings to the skew polynomial rings, that is, we show that if R is a semiprime ring with an epimorphism $\sigma$, then f(x)R[x; $\sigma$]g(x) = 0 implies $a_iR{\sigma}^{i+k}(b_j)=0$ for any integer k $\geq$ 0 and i, j, where $f(x)\;=\;\sum_{i=0}^ma_ix^i$, $g(x)\;=\;\sum_{j=0}^mb_jx^j\;{\in}\;R[x,\;{\sigma}]$. Moreover, we extend this property to the skew monoid rings, the Ore extensions of several types, and skew power series ring, etc. Next we define $\sigma$-skew quasi-Armendariz rings for an endomorphism $\sigma$ of a ring R. Then we study several extensions of $\sigma$-skew quasi-Armendariz rings which extend known results for quasi-Armendariz rings and $\sigma$-skew Armendariz rings.

STRUCTURE OF ZERO-DIVISORS IN SKEW POWER SERIES RINGS

  • HONG, CHAN YONG;KIM, NAM KYUN;LEE, YANG
    • 대한수학회지
    • /
    • 제52권4호
    • /
    • pp.663-683
    • /
    • 2015
  • In this note we study the structures of power-serieswise Armendariz rings and IFP rings when they are skewed by ring endomor-phisms (or automorphisms). We call such rings skew power-serieswise Armendariz rings and skew IFP rings, respectively. We also investigate relationships among them and construct necessary examples in the process. The results argued in this note can be extended to the ordinary ring theoretic properties of power-serieswise Armendariz rings, IFP rings, and near-related rings.

GENERALIZED SEMI COMMUTATIVE RINGS AND THEIR EXTENSIONS

  • Baser, Muhittin;Harmanci, Abdullah;Kwak, Tai-Keun
    • 대한수학회보
    • /
    • 제45권2호
    • /
    • pp.285-297
    • /
    • 2008
  • For an endomorphism ${\alpha}$ of a ring R, the endomorphism ${\alpha}$ is called semicommutative if ab=0 implies $aR{\alpha}(b)$=0 for a ${\in}$ R. A ring R is called ${\alpha}$-semicommutative if there exists a semicommutative endomorphism ${\alpha}$ of R. In this paper, various results of semicommutative rings are extended to ${\alpha}$-semicommutative rings. In addition, we introduce the notion of an ${\alpha}$-skew power series Armendariz ring which is an extension of Armendariz property in a ring R by considering the polynomials in the skew power series ring $R[[x;\;{\alpha}]]$. We show that a number of interesting properties of a ring R transfer to its the skew power series ring $R[[x;\;{\alpha}]]$ and vice-versa such as the Baer property and the p.p.-property, when R is ${\alpha}$-skew power series Armendariz. Several known results relating to ${\alpha}$-rigid rings can be obtained as corollaries of our results.

A REMARK ON IFP RINGS

  • Lee, Chang Hyeok;Lim, Hyo Jin;Park, Jae Hyoung;Kim, Jung Hyun;Kim, Jung Soo;Jeong, Min Joon;Song, Min Kyung;Kim, Si Hwan;Hwang, Su Min;Eom, Tae Kang;Lee, Min Jung;Lee, Yang;Ryu, Sung Ju
    • Korean Journal of Mathematics
    • /
    • 제21권3호
    • /
    • pp.311-318
    • /
    • 2013
  • We continue the study of power-Armendariz rings over IFP rings, introducing $k$-power Armendariz rings as a generalization of power-Armendariz rings. Han et al. showed that IFP rings are 1-power Armendariz. We prove that IFP rings are 2-power Armendariz. We moreover study a relationship between IFP rings and $k$-power Armendariz rings under a condition related to nilpotency of coefficients.

ON ANNIHILATOR IDEALS OF A NEARRING OF SKEW POLYNOMIALS OVER A RING

  • Hashemi, Ebrahim
    • 대한수학회지
    • /
    • 제44권6호
    • /
    • pp.1267-1279
    • /
    • 2007
  • For a ring endomorphism ${\alpha}$ and an ${\alpha}-derivation\;{\delta}$ of a ring R, we study relation between the set of annihilators in R and the set of annihilators in nearring $R[x;{\alpha},{\delta}]\;and\;R_0[[x;{\alpha}]]$. Also we extend results of Armendariz on the Baer and p.p. conditions in a polynomial ring to certain analogous annihilator conditions in a nearring of skew polynomials. These results are somewhat surprising since, in contrast to the skew polynomial ring and skew power series case, the nearring of skew polynomials and skew power series have substitution for its "multiplication" operation.