• Title/Summary/Keyword: power transmission system

Search Result 3,176, Processing Time 0.038 seconds

Power Line Communication Method with Splitting of Power Transmission Interval (전력전송구간을 분할하여 데이터 신호를 전송하는 전력선 통신방법)

  • Cho, Jae-Seung;Hwang, Il-Kyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.252-258
    • /
    • 2012
  • This paper studies the power line communication method with splitting of power transmission interval in the small DC power system using pulse width modulation. The method divides the entire interval for transmitting power and data into a power transmission interval where power is supplied to a load and a data transmission interval where power from the power supply to the load is disconnected. The circuit is designed for the implementation to separate the power line from the power supply and load. The results of tests show the feasibility of the proposed power line communication method.

Estimation Technique of Power Transmission Line Parameter by Phasor Measurement Units (송전선로 파라메터 정밀 예측을 위한 페이저 측정기의 응용)

  • Cho, Ki-Seon;Park, Jong-Bae;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.193-195
    • /
    • 2003
  • This paper presents an approach to estimate the power transmission line parameter by phasor measurement units(PMUs), which are synchronized to 1 pps signal of GPS. Existing approaches to estimate power transmission line parameter, are mainly off-line ones, based on faults or switching events on other neighboring lines. In this paper, to obtain static and dynamic properties of power transmission line parameter in service, the prototype of pmu-based Transmission Line Parameter Monitoring System (TLPMS) is proposed. Also, an technique to estimate parameters of transmission line described as 2-port network model and the soundness of estimated parameters are addressed.

  • PDF

Allocation of Transmission Loss for Determination of Locational Spot pricing

  • You, Chang-Seok;Min, Kyung-Il;Lee, Jong-Gi;Moon, Young-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.194-200
    • /
    • 2007
  • The deregulation problem has recently attracted attentions in a competitive electric power market, where the cost must be earmarked fairly and precisely for the customers and the Independent Power Producers (IPPs) as well. Transmission loss is an one of several important factors that determines power transmission cost. Because the cost caused by transmission losses is about $3{\sim}5%$, it is important to allocate transmission losses into each bus in a power system. This paper presents the new algorithm to allocate transmission losses based on an integration method using the loss sensitivity. It provides the buswise incremental transmission losses through the calculation of load ratios considering the transaction strategy of an overall system. The performance of the proposed algorithm is evaluated by the case studies carried out on the WSCC 9-bus and IEEE 14-bus systems.

Examination with Transmission Line Distance Relay Setting Rule Considering Error (오차를 고려한 송전선 보호 거리계전 정정룰에 대한 고찰)

  • Cho, Seong-Jin;Choi, Myeong-Song;Hyun, Seung-Ho;Kim, Joung-Wook;Lee, Joo-Wang;Cho, Bum-Sub;Yoo, Young-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.12-15
    • /
    • 2002
  • Korea Power System Protection Setting Rule was used from the rectify 1990's. Thereafter transmission voltage is raised the voltage into 765kV, and introduction to new technology of Power System, and was many of variation but, it is using. The present is using Digital type distance relay for 765kV transmission line protection. If impedance value of transmission line were to value lower than setting, this would be operating and relay setting rule is for 85% into Zone 1 self section, and Zone 2 is a 125%, Zone 3 is a 225%. Which's $15{\sim}25%$ include current transformer error 5%, potential transformer 5%, relay calculation error 5% and margin factor from the field experience. This paper is discussed transmission protective relay and relay setting rule of high voltage power system and we verify the correctness relay setting rule with distance relay using Matlab simulation.

  • PDF

Development and Application of Pre/Post-processor to EMTP for Sequence Impedance Analysis of Underground Transmission Cables (지중 송전선로 대칭분 임피던스 해석을 위한 EMTP 전후처리기 개발과 활용)

  • Choi, Jong-Kee;Jang, Byung-Tae;An, Yong-Ho;Choi, Sang-Kyu;Lee, Myoung-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1364-1370
    • /
    • 2014
  • Power system fault analysis has been based on symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. Obtaining accurate line impedances as possible are very important for estimating fault current magnitude and setting distance relay accurately. Especially, accurate calculation of zero sequence impedance is important because most of transmission line faults are line-to-ground faults, not balanced three-phase fault. Since KEPCO has started measuring of transmission line impedance at 2005, it has been revealed that the measured and calculated line impedances are well agreed within reasonable accuracy. In case of underground transmission lines, however, large discrepancies in zero sequence impedance were observed occasionally. Since zero sequence impedance is an important input data for distance relay to locate faulted point correctly, it is urgently required to analyze, detect and consider countermeasures to the source of these discrepancies. In this paper, development of pre/post processor to ATP (Alternative Transient Program) version of EMTP (Electro-Magnetic Transient Program) for sequence impedance calculation was described. With the developed processor ATP-cable, effects of ground resistance and ECC (Earth Continuity Conductor) on sequence impedance were analyzed.

Power Circulation Characteristics of Hydro-Mechanical transmission System in Steering (정유압 기계식 변속기의 조향시 동력 순환 특성)

  • Kim, J. S.;Kim, W.;Jung, Y. H.;Jung, S. B.;Kim, H. S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.13-22
    • /
    • 1997
  • Power flow characteristics of a hydro-mechanical transmission system(HMT) are investigated for tracked vehicle in steering. A HMT consisting of two hydrostatic pump motors(HST), several planetary gear trains and steer differential gear is considered. In order to obtain the direction and magnitude of the power flow of the HMT, network theory for the general power transmission is used. Network model for the HMT in steering is developed, which consists of shafts, nodes and transmission elements such as clutch, gear, etc. Power flow analysis procedure consists of two stages : (1) traction force analysis in steering, (2) power flow analysis in HMT. Torque and speed of every transmission element of the HMT is determined from the network analysis. Also, efficiency, mechanical and hydraulic power loss including HST, are obtained. In addition, the regenerative power flow resulting from steering can be studied in graphic display. The power flow analysis program(PCSTEER) developed in this work can be used as a useful design tool for the tracked vehicle with HMT.

  • PDF

Development of Expert System for Primary Restorative Transmission System Planning (전문가시스템을 이용한 시송전 계통의 구성)

  • Lee, Hung-Jae;Park, Sung-Jin;Lee, Kyeong-Seob;Park, Sung-Min
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.172-174
    • /
    • 2003
  • Power system restoration following a large black-out starts with charging of primary transmission lines. As the power systems are gradually enlarged and become more complex, the power plant and transmission of electricity units are being expanded continuously. Accordingly, evaluation and reconfiguration of the primary transmission system is needed. So far it has been decided to analyze and evaluate with the knowledge and experience of the corresponding expert. This paper presents an expert system for configuring the optimum primary transmission system based on expert knowledge, static analysis and configuration data.

  • PDF

Comparative Analysis and Improvement of Transmitting Efficiency in RF Wireless Charging System (RF무선충전 시스템 전송효율 개선 및 비교 분석)

  • Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.102-107
    • /
    • 2021
  • In this paper, the measurements of received power was shown and compared in two developed 5.8GHz 25W wireless charging systems. One is the system using commercial transmission antenna, and the other is the system using transmission antenna combined with metamaterial. The system combined with metamaterial shows higher received power due to negative reflective index of metamaterial. In addition, a comparative analysis of the systems shows that the transmission efficiency in the systems can decrease the real gain of transmission antenna due to higher side robe of beam pattern. The side robe beams of transmitting antenna interferes transmitted beam with the reflected beams from the bottom region due to the side robes. The failure problems of the RF wireless charging systems are discussed and proposed in order to charge mobile devices through the RF wireless charging system.

A Study on the Variation of the Transmission Capacity by External water Cooled System with Trough in Tunnel (전력구트라프내간접수냉방식에서의 송전용량 변화에 관한 연구)

  • 박만흥;조규식;김재근;서정윤
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.5
    • /
    • pp.445-458
    • /
    • 1992
  • As one of the forced cooling method of the underground power transmission system, external water cooled system with trough in tunnel was investigated. This study is performed on thermal analysis for a standard condition to determine the cable transmission current of the underground power transmission system about the cooling facility. A parametric study was performed for the inlet water temperatures, flow rates, the inlet air velocities, flow rates and the cooling spans. This study shows that the cable transmission current varies within the allowable limitation in compliance with the variation of inlet water temperatures and flow rates. It exhibits little variations for the most intervals in compliance with the variation of inlet air temperatures and flows. But, the cable transmission current fast reduces for a specified interval and consequently affects the underground transmission system. As a result, when the actual forced cooling system is designed, the design conditions of inlet air have to be considered as the most important parameters in determination of the cable transmission current.