• 제목/요약/키워드: power transmission pipeline

검색결과 22건 처리시간 0.023초

송전계통에서 고장에 따른 Gas Pipeline 유도전압 분석 (A Fault Effect to Induced Voltage of Gas Pipeline in Transmission Systems)

  • 김현수;이상봉;김철환
    • 전기학회논문지
    • /
    • 제57권10호
    • /
    • pp.1720-1725
    • /
    • 2008
  • Because of the continuous increasing of energy consumption, metallic pipelines are widely used to supply services to customers such as gas, oil, water, etc. Most common metallic pipelines are underground and are now frequently being installed in nearby electric power lines. In recent years, buried gas pipeline close to power lines can be subjected to hazardous induction effects, especially during single line to ground faults. because it can cause corrosion and it poses a threat to the safety of workers responsible for maintenance. Accordingly, it is necessary to take into consideration for analysis of induced voltage on gas pipelines in transmission lines. This paper analyzed the induced voltage on the gas pipelines due to the 154kV transmission lines in normal case and in different faulty case conditions using EMTP (Electro-Magnetic Transients Program).

실내시험을 통한 송배전관로 뒤채움재용 순환골재의 열적 특성 평가 (Laboratory Experiment to Characterize Thermal Properties of Recycled-Aggregate Backfill)

  • 위지혜;홍성연;이대수;한은선;최항석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.1231-1238
    • /
    • 2010
  • Recently, the utilization of recycled aggregates for backfilling a power transmission pipeline trench has been increasing due to the issues of eco-friendly construction and shortage of natural aggregate resource. It is important to investigate the physical and thermal properties of the recycled aggregates that can be used as a backfill material. This study presents the thermal properties of two types of recycled aggregates with various particle size distributions. The thermal properties of the recycled aggregate were measured using the transient hot wire method and the probe method after performing the standard compaction test using an automatic compactor. Similar to silica sand, the thermal resistivity of the recycled aggregates decreased when the water content increased. This study shows that the recycled aggregate can be a promising backfill material substituting for natural aggregate when backfilling the power transmission pipeline trench.

  • PDF

송배전관로 되메움용 순환골재의 열저항 측정 및 기존 열저항 예측 모델과의 비교 (Thermal Resistivity Measurement of Recycled Aggregates and Comparison with Conventional Prediction Model)

  • 위지혜;홍성연;최항석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.199.1-199.1
    • /
    • 2010
  • Use of recycled aggregates that are constituents of concrete or asphalt-based structures has become popular because the recycling is an eco-friendly way to overcome the depletion of natural aggregates. In order to adopt the recycled aggregates for backfilling a power transmission pipeline trench, their thermal resistivity should be low enough to prevent thermal runaway in the transmission system. In this study, a series of laboratory tests with QTM-500 and KD2 Pro was performed to measure the thermal resistivity of recycled aggregates prepared from various sources. Relationships between the thermal resistivity of recycled aggregates and the water content have been obtained with consideration of compaction effort. Similar to natural soils, the thermal resistivity of the recycled aggregates decreases with increasing the water content. In addition, this study compared the experimental data with conventional prediction models for the thermal resistivity in the literature, which suggests the availability of the recycled aggregates as backfill material substituting for natural aggregates when backfilling the power transmission pipeline trench.

  • PDF

유압전동장치의 유량 압력맥동 특성 (Flow and Pressure Ripple Characteristics of Hydrostatic Transmissions)

  • 김도태;윤인균
    • 한국공작기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.120-126
    • /
    • 2001
  • This study deals with a flow and pressure ripple characteristics for a hydrostatic transmission(HST) consisting of a vari-able axial piston pump connected in an open loop to a fixed displacement axial piston motor. These flow ripples produced by pump and motor in HST interacts with the source impedances of the pump or motor and dynamic characteristics of the connected pipeline, and results in a pressure ripples, Pressure ripples. Pressure ripples in HSP is major source of vibration, which can lead to fatigue failure of components and cause noise. In this paper, the flow ripples generated by a swash plate type axial piston pump or motor in HST are measured by making use of hydraulic pipeline dynamics and the measured pressure data at two points along the pipeline. By using the self-checking functions, the validity of the method us investigated by comparison with the measured and estimated pressure ripples at the halfway section of the pipeline, and good agreement is achieved.

  • PDF

Validation of Some Protection Guidelines for Neighboring Pipelines against Fault Currents from Power Transmission Tower

  • Lee, Seong-Min;Song, Hong-Seok;Kim, Young Geun
    • Corrosion Science and Technology
    • /
    • 제6권2호
    • /
    • pp.77-81
    • /
    • 2007
  • Fault current can be discharged from power transmission tower due to lightning or inadvertent contact of crane, etc. Pipelines in proximity to either the source of the ground fault or the substation grounding grid may provide convenient conductive path for the fault current to travel. Inappropriate measures to the neighboring pipelines against the fault current may cause severe damages to the pipes such as coating breakdown, arc burn, puncture, loss in wall thickness, or brittle heat-affected zone. Like inductive and conductive AC coupling, steadily induced fault current right after the coating breakdown can lead to corrosion of the pipeline. In this work, some protection guidelines against fault currents used in the field have been validated through the simulation and analytical method.

초고압 송전선로에서 가스관에 미치는 유도 장해 해석 (Analysis of Inductive Interference from EHV Transmission to buried Gas Pipelines)

  • 이승연;고은영;윤석무;박남옥;신명철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.458-460
    • /
    • 2000
  • In this paper, we analyze the inductive coupling between overhead power transmission lines and neighbouring gas pipelines or other conductors, when they parallel to a line section in a phase-to-earth fault is assumed on the transmission line. A numerical procedure employing the finite-element method(FEM) is used in conjunction with Faraday's law, in order to predict the current in a faulted transmission line as well as the induced voltages across points on a pipeline running parallel to the faulted line and remote earth. The results lead to conclusion that may be useful to power system engineers.

  • PDF

송전선로 철탑기초의 접지저항 해석 (Analysis of the Earth Resistance for the Tower Footing of T/L)

  • 이현구;하태현;배정효;김대경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.344-346
    • /
    • 2001
  • The sharing of common corridors by electric power transmission lines and pipelines is becoming more common place. However, such corridor sharing can result in undesired coupling of electromagnetic energy from the power lines to the near facilities. During a fault on any of the transmission lines, energization of the earth by supporting structures near the fault can result in large voltages appearing locally between the earth and the steel wall of any nearby pipeline. This paper presents the outline of the tower footings for the transmission lines having been used in KEPCO and analyzes the earth resistance for operation method of the tower footing, that is contact presence for the anchor and reinforcing rob of the tower and foundation presence of the underground wiring.

  • PDF

송배전관로 되메움재로 활용하기 위한 국내 순환골재의 다짐 및 열적 특성 평가 (Evaluation of Compaction and Thermal Characteristics of Recycled Aggregates for Backfilling Power Transmission Pipeline)

  • 위지혜;홍성연;이대수;박상우;최항석
    • 한국지반공학회논문집
    • /
    • 제27권7호
    • /
    • pp.17-33
    • /
    • 2011
  • 천연 골재자원의 고갈로 인해 송배전관로 되메움재의 대체골재로서 재생 순환골재 이용에 많은 관심이 집중되고 있다. 그러나 순환골재를 송매전관로 메움재로 적용하기 위해서는 물리적, 열적 특성 규명이 선행되어야 한다. 본 논문에서는 송배전관보 되메움재로 활용하기 위한 폐콘크리트 순환골재의 적용성을 평가하였다. 각 지역에서 채취한 순환골재와 대조군인 일반 강모래를 대상으로 실내다짐시험을 수행한 후, 비정상 열선법과 비정상 탐침법을 이용하여 열저항을 측정하였다. 저함수비 구간에서 비정상 탐침법을 이용한 열저항 측정값은 탐침관입에 따른 시료교란 효과로 인해 비정상 열선법보다 상대적으로 크게 측정되었다. 전체 순환골재의 열저항 측정 결과, 대조군인 강모래와 유사하게 함수비 증가에 따른 열저항의 감소를 보였다. 또한, 기존 열전도도(열저항) 예측 모델에 의한 열저항 예측값과 순환골재의 측정 결과를 비교하였으며, 순환골재에 열저항 예측에 적합한 예측식을 제안하였다. 본 연구결과를 바탕으로 재생 순환골재를 송배전판로 되메움재로 활용 가능함을 알 수 있다.

유압관로에서 맥동유동 특성에 관한 연구 (The Characteristics of Pulsating Flow in a Hydraulic Pipe)

  • 모양우;유영태;김지화
    • 설비공학논문집
    • /
    • 제13권7호
    • /
    • pp.653-665
    • /
    • 2001
  • The characteristics of the pulsating flow in a hydraulic pipe have been investigated. It is necessary to study the power control of the power transmission system in the landing gear system of aircraft and the design of robots. In this system, the power transmission pipeline is composed of a hydraulic system, and the operating flow is unsteady flow. The wave equation varying with frequency is analyzed in order to investigate the characteristics of unsteady flow in such a pipe. This wave equation involves the propagation coefficient in terns of frequency and viscosity. The theoretical result of this wave equation are compared with experimental result. Each wave equation, varying with the propagation coefficient, is analyzed theoretically. then, a sinusoidal wave generator is built in order to make better sinusoidal waves, and a rectifier is built to eliminate the noise from the hydraulic pump. The theoretical results of the wave equation in the flow of viscous fluid agree well with experimental results.

  • PDF

에어챔버가 설치된 송수관로에서의 수격현상 (Waterhammer in the Transmission Pipeline with an Air Chamber)

  • 김경엽
    • 대한기계학회논문집B
    • /
    • 제26권2호
    • /
    • pp.177-183
    • /
    • 2002
  • The field tests on the waterhammer were carried out in the pump pipeline system with an air chamber. The effects of the input variables and the design parameters for the air chamber were investigated by both the numerical calculations and the experiments. Because the waterhammer problems as a result of the pump power failure were the most important, these situations were carefully studied. Among the input variables used in the waterhammer analysis, the polytropic exponent, the discharge coefficient and the wavespeed had influence on the simulated results in that order, and were calibrated in comparison with the experimental results. As the initial air volume in a vessel increased, the period of waterhammer increased and the pressure variation decreased, resulting from the reduction of the rate of pressure change in the air chamber. Using smaller orifice in the bypass pipe, the pressure rise was suppressed in some degree and the pressure surge was dissipated more rapidly as time passed. The simulations were in fairly good agreement with the measured values until 1∼2 periods of waterhammer. Not only the maximum and minimum pressures in the pipe1ine but also those occurring times were reasonably predicted. The computer program developed in this study will be useful in designing the optimum parameters of an air chamber for the real pump pipeline system.