• Title/Summary/Keyword: power switch

Search Result 1,753, Processing Time 0.029 seconds

Design and Test of Vacuum Rotary Arc Gap Switch (Vacuum Rotary Arc Gap Switch의 설계 및 시험)

  • 서길수;황동원;이태호;황리호;김희진;이홍식;임근희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.1
    • /
    • pp.19-24
    • /
    • 2003
  • Design and test results of a VRAG(Vacuum Rotary Arc Gap) switch were presented. To control the damage of electrodes caused by the vacuum arc, Lorentz's force by the radial magnetic field between spiral electrodes was used to rotate the vacuum uc. VRAG switch electrodes were made of the material of CuCr and OFHC. Gap distance between two spiral type electrodes for the rotation of the arc discharge is 8, 10, 12mm. In the cathode, one trigger electrode was inserted into each spiral wing. Normal operation of the VRAG switch was confirmed with 10.6[$mutextrm{s}$]of trigger delay and 2~3[$mutextrm{s}$] of the jitter time. The speed of the vacuum arc was measured to be 0.6 ~ 1[km/s] by a motion analyzer.

High Frequency Inverter for Induction Heating with Multi-Resonant Zero Current Switching (다중공진 영전류 스위칭을 이용한 고주파 유도가열용 인버터)

  • Ra, B.H.;Suh, K.Y.;Lee, H.W.;Kim, K.T.
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.38-40
    • /
    • 2002
  • In the case of conventional high frequency inverter, with damage of switch by surge voltage when switch gets into compulsion extinction by load accident and so on because reactor is connected by series to switch, or there was problem of conduction loss by reactor's resistivity component, Also, it has controversial point of that can not ignore conduction loss of switch in complete work kind action of soft switching. In this paper, as high frequency induction heating power supply, we propose half bridge type multi resonance soft switching high frequency inverter topology that can realize high amplitude operation of load current with controlling switch current by multiplex resonance, mitigating surge voltage when switch gets into compulsion extinction and to be complete operation of zero current switching by opposit parallel connected reactor to inverter switch. and do circuit analysis for choice of most suitable circuit parameter of circuit

  • PDF

IGBT gate drive circuit using snubber energy (스너버 에너지를 이용한 IGBT 구동 회로)

  • Kim, Sung-Chul;Jeon, Seong-Jeub
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2112-2114
    • /
    • 1998
  • A gate driver suitable for forced switch-mode power converters such as UPS and motor drive system is presented. The proposed gate driver uses regenerated snubber power and requires no separate power supply. This does not impose any additional complexity on the main switch. Experimental results show that the proposed circuit is valid.

  • PDF

A High Voltage, High Side Current Sensing Boost Converter

  • Choi, Moonho;Kim, Jaewoon
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.36-37
    • /
    • 2013
  • This paper presents high voltage operation sensing boost converter with high side current. Proposed topology has three functions which are high voltage driving, high side current sensing and low voltage boost controller. High voltage gate driving block provides LED dimming function and switch function such as a load switch of LED driver. To protect abnormal fault and burn out of LED bar, it is applied high side current sensing method with high voltage driver. This proposed configuration of boost converter shows the effectiveness capability to LED driver through measurement results.

  • PDF

High Performance and Low Cost Single Switch Energy Recovery Display Driver for AC Plasma Display Panel

  • Han Sang Kyoo;Moon Gun-Woo;Youn Myung Joong
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.723-727
    • /
    • 2004
  • A new high-performance and low cost single switch energy recovery display driver for an AC plasma display panel (PDP) is proposed. Since it is composed of only one auxiliary power switch, two small inductors, and eight diodes compared with the conventional circuit consisting of four auxiliary power switches, two small inductors, eight power diodes, and two external capacitors, it features a much simpler structure and lower cost. Nevertheless, since the rootmean-square (RMS) value of the inductor current is very small, it also has very desirable advantages such as n low conduction loss and high efficiency. Furthermore, there are no serious voltage-drops caused by the large gas-discharge current with the aid of the discharge current compensation, which can also greatly reduce the current flowing through power switches and maintain the panel to light at n lower sustaining voltage. In addition, all main power switches are turned on under the zero-voltage switching (ZVS) and thus, the proposed circuit has a improved EMI, increased reliability, and high efficiency. Therefore, the proposed circuit will be well suited to the wall hanging PDP TV. To confirm the validity of the proposed circuit, circuit operations, features,and design considerations are presented and verified experimentally on a 6-inch PDP, 50kHz-switching frequency, and sustaining voltage 141V based prototype.

  • PDF

Low Cost and High Performance UPQC with Four-Switch Three-Phase Inverters

  • Trinh, Quoc-Nam;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1015-1024
    • /
    • 2015
  • This paper introduces a low cost, high efficiency, high performance three-phase unified power quality conditioner (UPQC) by using four-switch three-phase inverters (FSTPIs) and an extra capacitor in the shunt active power filter (APF) side of the UPQC. In the proposed UPQC, both shunt and series APFs are developed by using FSTPIs so that the number of switching devices is reduced from twelve to eight devices. In addition, by inserting an additional capacitor in series with the shunt APF, the DC-link voltage in the proposed UPQC can also be greatly reduced. As a result, the system cost and power loss of the proposed UPQC is significantly minimized thanks to the use of a smaller number of power switches with a lower rating voltage without degrading the compensation performance of the UPQC. Design of passive components for the proposed UPQC to achieve a good performance is presented in detail. In addition, comparisons on power loss, overall system efficiency, compensation performance between the proposed UPQC and the traditional one are also determined in this paper. Simulation and experimental studies are performed to verify the validity of the proposed topology.

A Singular Value Decomposition based Space Vector Modulation to Reduce the Output Common-Mode Voltage of Direct Matrix Converters

  • Guan, Quanxue;Yang, Ping;Guan, Quansheng;Wang, Xiaohong;Wu, Qinghua
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.936-945
    • /
    • 2016
  • Large magnitude common-mode voltage (CMV) and its variation dv/dt have an adverse effect on motor drives that leads to early winding failure and bearing deterioration. For matrix converters, the switch states that connect each output line to a different input phase result in the lowest CMV among all of the valid switch states. To reduce the output CMV for matrix converters, this paper presents a new space vector modulation (SVM) strategy by utilizing these switch states. By this mean, the peak value and the root mean square of the CMV are dramatically decreased. In comparison with the conventional SVM methods this strategy has a similar computation overhead. Experiment results are shown to validate the effectiveness of the proposed modulation method.

Reliability Enhancement of Hybrid Superconducting Fault Current Limiter adopting Power Electric Device (전력용 반도체 소자를 적용한 하이브리드 초전도 한류기 동작 신뢰도 향상)

  • Sim, J.;Park, K.B.;Lim, S.W.;Kim, H.R.;Lee, B.W.;Oh, I.S.;Hyun, O.B.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.57-61
    • /
    • 2007
  • The current limiting characteristics of hybrid SFCL with additional power electronic devices was investigated in order to improve operation reliabilities. The hybrid SFCL developed consists of a superconducting trigger (S/T) part, a fast switch (F/S) module and a current limiting (C/L) part. Although hybrid SFCL had shown a excellent current limiting characteristics, this device was rather vulnerable to the residual arc currents which could exist during fast switch operation. This undesirable arc should be extinguished as quickly as possible in order to implement perfect fault current commutation. So, in order to eliminate the residual arcs between fast switch contacts, the power electronic devices (IGBT or GTO) were connected in series between the S/T part and the interrupter of the F/S module. According to the fault tests conducting with an input voltage of $270\;V_{rms}$ and a fault current of $5\;kA_{rms}$, The power electronic devices could perfectly remove the arc generated between the contacts of the interrupter within 4 ms after the fault occurred. From the test analysis, it was confirmed that the hybrid SFCL could enhance the operation reliability by adopting additional power electronic devices.

A New Current Controlled Inverter with ZVT Switching

  • Lee S. R.;Jeon C. H.;Ko S. H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.309-313
    • /
    • 2001
  • A single-phase bi-directional inverter with a diode bridge-type resonant circuit to implement ZVT(Zero Voltage Transition) switching is proposed. It is shown that the polarized ramptime current control algorithm, a method that belongs to the family of ZACE(Zero Average Current Error) methods, is a suitable technique to integrate with a typical single-phase ZVT inverter. The proposed current control algorithm is analyzed to design the circuit with auxiliary switch which can operate with ZVT for the main power switch. The simulation results would be shown to verify the proposed current algorithm to turn the main power switch on with ZVT and to operate the inverter bi-directionally

  • PDF

An Implementation of a Current Controlled Bi-directional Inverter with ZVT Switching (ZVT 스위칭 되는 전류제어형 양방향 인버터의 구현)

  • Lee S.R.;Ko S.H.;Kim S.W.
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.149-152
    • /
    • 2001
  • A Single-phase bi-directional inverter Using a diode bridge-type resonant circuit to implement ZVT(Zero Voltage Transition) switching is Presented. It is shown that the ZACE(Zero Average Current Error) algorithm based polarized ramptime current control can provide a suitable interface between diode bridge-type resonant circuit DC link and the inverter. The current control algorithm is analyzed about how to design the circuit with analyzed switch which m ZVT operation for the main power switch The simulation and experimental results would be shown to verify the proposed current algorithm, because the main power switch is turn on with ZVT and the bi-directional inverter is operated.

  • PDF