• Title/Summary/Keyword: power storage

Search Result 2,648, Processing Time 0.028 seconds

Effect of Mushroom (Lentinus Tuber-Regium) Powder on the Bread Making Properties of Wheat Flour (버섯(Lentinus Tuber-Regium)분말 첨가가 제빵 특성에 미치는 영향)

  • Lee, Min-Jeong;Kyung, Kyu-Hang;Chang, Hak-Gil
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.32-37
    • /
    • 2004
  • Effects of mushroom powder on physicochemical characteristics of dough and bread-making properties were studied. In mixogram test, addition of 2-10% mushroom powder increased water absorption from 67,0 to 79%. Peak time, peak height, band width, and seven minute height of mushroom-wheat flour composite were similar to those of control. Sedimentation and P.K. values decreased with increasing amount of mushroom powder In amylogram test, no significant difference was observed in gelatinization temperature between control and mushroom powder-added dough. Peak viscosity increased with increasing amount of mushroom powder, Highest loaf volume was attained when 2 and 4% mushroom powders were added, whereas decreased above 6%. Bread weight and L value of crust increased with increasing amount of mushroom powder whereas 'a' value decreased. As the amount of mushroom powder increased, L value of crumb color decreased. No significant difference in springiness and adhesiveness was observed between control and mushroom-wheat composite flour bread whereas chewiness and gumminess, increased with increasing amount of mushroom powder, Hardness generally increased as the amount of mushroom powder increased. Mushroom powder caused bread staling at both storage temperatures ($4^{\circ}C\;and\;25^{\circ}C$). Although sensory value decreased with increasing mushroom powder, use of mushroom powder to replace up to 4% wheat flour is recommended in making bread.

A Study on the establishment of IoT management process in terms of business according to Paradigm Shift (패러다임 전환에 의한 기업 측면의 IoT 경영 프로세스 구축방안 연구)

  • Jeong, Min-Eui;Yu, Song-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.151-171
    • /
    • 2015
  • This study examined the concepts of the Internet of Things(IoT), the major issue and IoT trend in the domestic and international market. also reviewed the advent of IoT era which caused a 'Paradigm Shift'. This study proposed a solution for the appropriate corresponding strategy in terms of Enterprise. Global competition began in the IoT market. So, Businesses to be competitive and responsive, the government's efforts, as well as the efforts of companies themselves is needed. In particular, in order to cope with the dynamic environment appropriately, faster and more efficient strategy is required. In other words, proposed a management strategy that can respond the IoT competitive era on tipping point through the vision of paradigm shift. We forecasted and proposed the emergence of paradigm shift through a comparative analysis of past management paradigm and IoT management paradigm as follow; I) Knowledge & learning oriented management, II) Technology & innovation oriented management, III) Demand driven management, IV) Global collaboration management. The Knowledge & learning oriented management paradigm is expected to be a new management paradigm due to the development of IT technology development and information processing technology. In addition to the rapid development such as IT infrastructure and processing of data, storage, knowledge sharing and learning has become more important. Currently Hardware-oriented management paradigm will be changed to the software-oriented paradigm. In particular, the software and platform market is a key component of the IoT ecosystem, has been estimated to be led by Technology & innovation oriented management. In 2011, Gartner announced the concept of "Demand-Driven Value Networks(DDVN)", DDVN emphasizes value of the whole of the network. Therefore, Demand driven management paradigm is creating demand for advanced process, not the process corresponding to the demand simply. Global collaboration management paradigm create the value creation through the fusion between technology, between countries, between industries. In particular, cooperation between enterprises that has financial resources and brand power and venture companies with creative ideas and technical will generate positive synergies. Through this, The large enterprises and small companies that can be win-win environment would be built. Cope with the a paradigm shift and to establish a management strategy of Enterprise process, this study utilized the 'RTE cyclone model' which proposed by Gartner. RTE concept consists of three stages, Lead, Operate, Manage. The Lead stage is utilizing capital to strengthen the business competitiveness. This stages has the goal of linking to external stimuli strategy development, also Execute the business strategy of the company for capital and investment activities and environmental changes. Manege stage is to respond appropriately to threats and internalize the goals of the enterprise. Operate stage proceeds to action for increasing the efficiency of the services across the enterprise, also achieve the integration and simplification of the process, with real-time data capture. RTE(Real Time Enterprise) concept has the value for practical use with the management strategy. Appropriately applied in this study, we propose a 'IoT-RTE Cyclone model' which emphasizes the agility of the enterprise. In addition, based on the real-time monitoring, analysis, act through IT and IoT technology. 'IoT-RTE Cyclone model' that could integrate the business processes of the enterprise each sector and support the overall service. therefore the model be used as an effective response strategy for Enterprise. In particular, IoT-RTE Cyclone Model is to respond to external events, waste elements are removed according to the process is repeated. Therefore, it is possible to model the operation of the process more efficient and agile. This IoT-RTE Cyclone Model can be used as an effective response strategy of the enterprise in terms of IoT era of rapidly changing because it supports the overall service of the enterprise. When this model leverages a collaborative system among enterprises it expects breakthrough cost savings through competitiveness, global lead time, minimizing duplication.

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • Yun, Won-Seop;Lee, Sang-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF

Relationship between Compressive Strength and Dynamic Modulus of Elasticity in the Cement Based Solid Product for Consolidating Disposal of Medium-Low Level Radioactive Waste (중·저준위 방사성 폐기물 처리용 시멘트 고화체의 압축강도와 동탄성계수의 관계)

  • Kim, Jin-Man;Jeong, Ji-Yong;Choi, Ji-Ho;Shin, Sang-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.321-329
    • /
    • 2013
  • Recently, the medium-low level radioactive waste from nuclear power plant must be transported from temporary storage to the final repository. Medium-low level radioactive waste, which is composed mainly of the liquid ion exchange resin, has been consolidated with cementitious material in the plastic or iron container. Since cementitious material is brittle, it would generate cracks by impact load during transportation, signifying leakage of radioactive ray. In order to design the safety transporting equipment, there is a need to check the compressive strength of the current waste. However, because it is impossible to measure strength by direct method due to leakage of radioactive ray, we will estimate the strength indirectly by the dynamic modulus of elasticity. Therefore, it must be identified the relationship between of strength and dynamic modulus of elasticity. According to the waste acceptance criteria, the compressive strength of cement based solid is defined as more than 3.44 MPa (500 psi). Compressive strength of the present solid is likely to be significantly higher than this baseline because of continuous hydration of cement during long period. On this background, we have tried to produce the specimens of the 28 day's compressive strength of 3 to 30 MPa having the same material composition as the solid product for the medium-low level radioactive waste, and analyze the relationship between the strength and the dynamic modulus of elasticity. By controling the addition rates of AE agent, we made the mixture containing the ion exchange resin and showing the target compressive strength (3~30 MPa). The dynamic modulus of elasticity of this mixtures is 4.1~10.2 GPa, about 20 GPa lower in the equivalent compressive strength level than that of ordinary concrete, and increasing the discrepancy according to increase strength. The compressive strength and the dynamic modulus of elasticity show the liner relationship.

Skin Improvement Effects and Development of Liposome Capsule Technology Using Centella Asiatica Extract Powder (센텔라아시아티카정량추출물의 리포좀 캡슐기술 개발과 피부개선효과)

  • Kim, Seong Jang;Ju, Yeon Jeong;Kim, In-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1285-1297
    • /
    • 2020
  • In this study, we report the results of a study on the clinical evaluation of wrinkle improvement by developing a method for liposome of high-purity Centella asiatica extract used in pharmaceuticals and cosmetics, and a cream using the same. In order to make Centellasome-10EX stabilizing centella asiatica extract in liposome lamella vesicle, it could be completed using 5% hydrogenated lecithin and 2% sucrose distearate. The appearance of Centellasome-10EX was a creamy form of low viscosity, the color was pale yellow, and the odor had the inherent odor of the raw material. The pH was about 6.12, the specific gravity was 1.09, and the acid value was about 0.35. The content of the main constituents of centella asiatica extract contained in the liposome vesicle contains 10,800 ppm of asiatic acid, 10,900 ppm of asiaticoside, 6,000 ppm of madecasic acid, and 1,600 ppm of madecassoside, and long-term storage. There was no discoloration even at the time, and it was found that the main component remained stable thermodynamically. To mechanistically analyze the structure of the liposome vesicle of Centellasome-10EX, as a result of observation with a transmission electron microscope (Cryo-TEM), the multilayer vesicles are formed and filled with moisture, and there are 10 to 60 multilayers around it. It was confirmed that the liposome lamella vesicle was formed. As a clinical trial (in-vivo) test, the moisturizing effect of centellasome cream after application for 5 weeks was 28.3%, which was significantly increased compared to placebo. The skin elasticity effect was 13.6%, which significantly increased the moisturizing power than the placebo. The effect of improving fine wrinkles around the eyes was improved by 23.52% compared to placebo cream. Through the results of this study, it was possible to study the formulation and manufacturing method for encapsulation and stabilization of the developed Centellasome-10EX in the liposome vesicle. It is expected that the results obtained through clinical research on the wrinkle improvement effect of the cream using this can be widely used to study skin science in the cosmetic industry and to develop high-quality cosmetics with high efficacy.

Wearable Computers

  • Cho, Gil-Soo;Barfield, Woodrow;Baird, Kevin
    • Fiber Technology and Industry
    • /
    • v.2 no.4
    • /
    • pp.490-508
    • /
    • 1998
  • One of the latest fields of research in the area of output devices is tactual display devices [13,31]. These tactual or haptic devices allow the user to receive haptic feedback output from a variety of sources. This allows the user to actually feel virtual objects and manipulate them by touch. This is an emerging technology and will be instrumental in enhancing the realism of wearable augmented environments for certain applications. Tactual displays have previously been used for scientific visualization in virtual environments by chemists and engineers to improve perception and understanding of force fields and of world models populated with the impenetrable. In addition to tactual displays, the use of wearable audio displays that allow sound to be spatialized are being developed. With wearable computers, designers will soon be able to pair spatialized sound to virtual representations of objects when appropriate to make the wearable computer experience even more realistic to the user. Furthermore, as the number and complexity of wearable computing applications continues to grow, there will be increasing needs for systems that are faster, lighter, and have higher resolution displays. Better networking technology will also need to be developed to allow all users of wearable computers to have high bandwidth connections for real time information gathering and collaboration. In addition to the technology advances that make users need to wear computers in everyday life, there is also the desire to have users want to wear their computers. In order to do this, wearable computing needs to be unobtrusive and socially acceptable. By making wearables smaller and lighter, or actually embedding them in clothing, users can conceal them easily and wear them comfortably. The military is currently working on the development of the Personal Information Carrier (PIC) or digital dog tag. The PIC is a small electronic storage device containing medical information about the wearer. While old military dog tags contained only 5 lines of information, the digital tags may contain volumes of multi-media information including medical history, X-rays, and cardiograms. Using hand held devices in the field, medics would be able to call this information up in real time for better treatment. A fully functional transmittable device is still years off, but this technology once developed in the military, could be adapted tp civilian users and provide ant information, medical or otherwise, in a portable, not obstructive, and fashionable way. Another future device that could increase safety and well being of its users is the nose on-a-chip developed by the Oak Ridge National Lab in Tennessee. This tiny digital silicon chip about the size of a dime, is capable of 'smelling' natural gas leaks in stoves, heaters, and other appliances. It can also detect dangerous levels of carbon monoxide. This device can also be configured to notify the fire department when a leak is detected. This nose chip should be commercially available within 2 years, and is inexpensive, requires low power, and is very sensitive. Along with gas detection capabilities, this device may someday also be configured to detect smoke and other harmful gases. By embedding this chip into workers uniforms, name tags, etc., this could be a lifesaving computational accessory. In addition to the future safety technology soon to be available as accessories are devices that are for entertainment and security. The LCI computer group is developing a Smartpen, that electronically verifies a user's signature. With the increase in credit card use and the rise in forgeries, is the need for commercial industries to constantly verify signatures. This Smartpen writes like a normal pen but uses sensors to detect the motion of the pen as the user signs their name to authenticate the signature. This computational accessory should be available in 1999, and would bring increased peace of mind to consumers and vendors alike. In the entertainment domain, Panasonic is creating the first portable hand-held DVD player. This device weight less than 3 pounds and has a screen about 6' across. The color LCD has the same 16:9 aspect ratio of a cinema screen and supports a high resolution of 280,000 pixels and stereo sound. The player can play standard DVD movies and has a hour battery life for mobile use. To summarize, in this paper we presented concepts related to the design and use of wearable computers with extensions to smart spaces. For some time, researchers in telerobotics have used computer graphics to enhance remote scenes. Recent advances in augmented reality displays make it possible to enhance the user's local environment with 'information'. As shown in this paper, there are many application areas for this technology such as medicine, manufacturing, training, and recreation. Wearable computers allow a much closer association of information with the user. By embedding sensors in the wearable to allow it to see what the user sees, hear what the user hears, sense the user's physical state, and analyze what the user is typing, an intelligent agent may be able to analyze what the user is doing and try to predict the resources he will need next or in the near future. Using this information, the agent may download files, reserve communications bandwidth, post reminders, or automatically send updates to colleagues to help facilitate the user's daily interactions. This intelligent wearable computer would be able to act as a personal assistant, who is always around, knows the user's personal preferences and tastes, and tries to streamline interactions with the rest of the world.

  • PDF

A Study on Development of Alternative Non-aqueous Cleaning Agents to Ozone Depletion Substances and its Field Application (오존파괴물질 대체 비수계세정제 개발 및 현장 적용 연구)

  • Park, Yong-Bae;Bae, Jae-Heum;Lee, Min-Jae;Lee, Jong-Gi;Lee, Ho-Yeoul;Bae, Soo-Jung;Lee, Dong-Kee
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.306-313
    • /
    • 2011
  • Flux or solder is used in soldering process for manufacturing electronic parts such as printed circuit boards (PCB). After soldering process, residual flux and solder paste on the parts should be removed since their residuals could cause performance degradation or failure of parts due to their corrosion and electric leakage. Ozone depletion substances such as 1,1,1- trichloroethane (TCE) and HCFC-141b have widely been using for removal of residual flux and solder paste after soldering process In manufacturing of electronic parts until now. In this study, non-aqueous cleaning agents without flash point were developed and applied to industrial field for replacement of cleaning agents with ozone depletion. In order to develop non-aqueous cleaning agents without ethers, esters, fluoride- type solvents. And their physical properties and cleaning abilities were evaluated, and they were applied to industrial fields for cleaning of flux and solder on the PCB. And vacuum distillation apparatus were operated to determine their operating conditions and recycling yields for recycling of used cleaning agents formulated in this study. As a result of physical properties measurement of our formulated cleaning agents, they were expected to have good wetting and penetrating power since their surface tensions were relatively low as 18.0~20.4 dyne/$cm^2$ and their wetting indices are relatively large. And some cleaning agents holding fluoride-type solvents as their components did not have any flash point and they seemed to be safe in their handling and storage. The cleaning experimental results showed that some cleaning agents were better in their cleaning of flux and solder paste than 1,1,1-TCE and HCFC-141b. And industrial application results of the formulated cleaning agents for cleaning PCB indicated that they can be applicable to industry due to their good cleaning capability in comparison with HCFC-141b. The recycling experiments of the used formulated cleaning agents through a vacuum distillation apparatus also showed that their 91.9~97.5% could be recycled with its proper operating conditions.

Methods that can be Substituted for Earth Healing of Seedling by Using the Plastic Vinyl and their Micro-climatical Characteristics (프라스틱비닐제품(製品)을 이용(利用)한 가식대치방법(假植代置方法)과 미기상학적(微氣象學的) 특성(特性))

  • Ma, Sang Kyu;Lee, Jang Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.47 no.1
    • /
    • pp.44-51
    • /
    • 1980
  • In order to find out the suitable methods that can omit the earth healing and increase the survival through improving the seedling-healing and transportable methods. Several trials with plastic vinyl have been done and its results are as follows: 1. Though P. rigitaeda seedling have been stored in the black and white vinyl sack for 35 days in the storehouse. This seedling have survived with very high percentage as Table 1. This means that the earth healing work at the nursery or planting area can be omitted if seedling sould be stored in the storehouse by using the vinyl sack. The possibilities of long-period storage in the black and white vinyl sack seem to be come from the reasons that air humidity in the sack is nearly 100% and its air temperature is only around $15^{\circ}C$ with very little difference between day and night time. This sack also can be utilized in place of the planting sack, and though this sack with seedling have been laid under direct sunshine for 1 to 2 days. Any difference between the sack stored in the storehouse has not been observed on the survival specially Table 2. 2. When the bundled seedling have been covered with the black and white vinyl instead of earth healing, even if these seedling have been laid for 18 days under the vinyl. This seedling show us high survival as Table 3. High humidity with nearly 95%, very little difference of air temperature between day and night time under the vinyl and not so big difference between out-and inside temperature could be reasons of high survival to be considered. So through covering by the black and white vinyl. The labour power for earth healing works can be saved also. 3. In order to protect the healed seedling from the direct sunshine and the eva-transpiration. Black vinyl net and reed mat could be effective for this purpose. Because vinyl net could intercept around one to third, reed mat two to third of total solar energy and also suppress more than 50% of total water loss by the transpiration.

  • PDF

Upgrading of Quercus mongollica bio-oil by esterification (에스터화 반응을 이용한 신갈나무 바이오오일 품질 개선)

  • Chea, Kwang-Seok;Lee, Hyung-Won;Jeong, Han-Seob;Lee, Jae-Jung;Ju, Young-Min;Lee, Soo-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.975-984
    • /
    • 2018
  • Fast pyrolysis bio-oil has unfavorable properties that restrict its use in many applications. Among the main issues are high acidity, instability, and water and oxygen content, which give rise to corrosiveness, polymerization during storage, and a low heating value. Esterification and azeotropic water removal can improve all of these properties. A 500 g of Quercus mongollica which grounded 0.8~1.4 mm was processed into bio-oil via fast pyrolysis for 2 seconds at $550^{\circ}C$. The esterification consists of treating pyrolysis oil with a high boiling alcohol like n-butanol at $70^{\circ}C$ under reduced pressure (100 hPa). All products are analyzed for water mass fraction, viscosity, higher heating value, pH, FT-IR and GC/MS. The water mass fraction can be reduced by 91.4 % (from 31.5 % to below 2.7 %), the viscosity by 65.8 % (from 36.5 to 12.5 cP) and the higher heating value can be increased by 96.8 % (from 3,918 to 7,712 kcal/kg), the pH by 1.3 (from 2.7 to 4.0). FT-IR and GC/MS analysis indicated that labile acids, aldehydes, ketones and lower alcohols were transformed to stable target products. Using this approach, the water content of the pyrolysis oil is reduced significantly. These improvements should allow the utilization of upgraded pyrolysis liquids in standard boilers and as fuel in CHP (Combined heat and power) plants.

CO2 Methanation Characteristics over Ni Catalyst in a Pressurized Bubbling Fluidized Bed Reactor (가압 기포 유동층 반응기에서의 Ni계 촉매 CO2 메탄화 특성 연구)

  • Son, Seong Hye;Seo, Myung Won;Hwang, Byung Wook;Park, Sung Jin;Kim, Jung Hwan;Lee, Do Yeon;Go, Kang Seok;Jeon, Sang Goo;Yoon, Sung Min;Kim, Yong Ku;Kim, Jae Ho;Ryu, Ho Jeong;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.871-877
    • /
    • 2018
  • Storing the surplus energy from renewable energy resource is one of the challenges related to intermittent and fluctuating nature of renewable energy electricity production. $CO_2$ methanation is well known reaction that as a renewable energy storage system. $CO_2$ methanation requires a catalyst to be active at relatively low temperatures ($250-500^{\circ}C$) and selectivity towards methane. In this study, the catalytic performance test was conducted using a pressurized bubbling fluidized bed reactor (Diameter: 0.025 m and Height: 0.35 m) with $Ni/{\gamma}-Al_2O_3$ (Ni70%, and ${\gamma}-Al_2O_3$30%) catalyst. The range of the reaction conditions were $H_2/CO_2$ mole ratio range of 4.0-6.0, temperature of $300-420^{\circ}C$, pressure of 1-9 bar, and gas velocity ($U_0/U_{mf}$) of 1-5. As the $H_2/CO_2$ mole ratio, temperature and pressure increased, $CO_2$ conversion increases at the experimental temperature range. However, $CO_2$ conversion decreases with increasing gas velocity due to poor mixing characteristics in the fluidized bed. The maximum $CO_2$ conversion of 99.6% was obtained with the operating condition as follows; $H_2/CO_2$ ratio of 5, temperature of $400^{\circ}C$, pressure of 9 bar, and $U_0/U_{mf}$ of 1.4-3.