• 제목/요약/키워드: power prediction

검색결과 2,193건 처리시간 0.028초

인공 신경망과 지지 벡터 회귀분석을 이용한 대학 캠퍼스 건물의 전력 사용량 예측 기법 (An Electric Load Forecasting Scheme for University Campus Buildings Using Artificial Neural Network and Support Vector Regression)

  • 문지훈;전상훈;박진웅;최영환;황인준
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제5권10호
    • /
    • pp.293-302
    • /
    • 2016
  • 전기는 생산과 소비가 동시에 이루어지므로 필요한 전력 사용량을 예측하고, 이를 충족시킬 수 있는 충분한 공급능력을 확보해야만 안정적인 전력 공급이 가능하다. 특히, 대학 캠퍼스는 전력 사용이 많은 곳으로 시간과 환경에 따라 전력 변화폭이 다양하다. 이러한 이유로, 효율적인 전력 공급 및 관리를 위해서는 전력 사용량을 실시간으로 예측할 수 있는 모델이 요구된다. 국내외 대학 건물에 대해서는 전력 사용 패턴과 사례 분석을 통해 전력 사용에 영향을 주는 요인들을 파악하기 위한 다양한 연구가 진행되었으나, 전력 사용량의 정량적 예측을 위해서는 더 많은 연구가 필요한 상황이다. 본 논문에서는, 기계 학습 기법을 이용하여 대학 캠퍼스의 전력 사용량 예측 모델을 구성하고 평가한다. 이를 위해, 대학 캠퍼스의 주요 건물 클러스터에 대해 전력 사용량을 15분마다 1년 이상 수집한 데이터 셋을 사용한다. 수집된 전력 사용량 데이터는 수열 형태의 시계열 데이터로 기계 학습 모델에 적용 시 주기성 정보를 반영할 수 없으므로, 2차원 공간의 연속적인 데이터로 증강함으로써 주기성을 반영하였다. 이 데이터와 교육기관의 특성을 반영하기 위한 요일과 공휴일로 구성된 8차원 특성 벡터에 대해 주성분 분석(Principal Component Analysis) 알고리즘을 적용한다. 이어, 인공 신경망(Artificial Neural Network)과 지지 벡터 회귀분석(Support Vector Regression)을 이용하여 전력 사용량 예측 모델을 학습시키고, 5겹 교차검증(5-fold Cross Validation)을 통하여 적용된 기법의 성능을 평가하여, 실제 전력 사용량과 예측 결과를 비교한다.

라즈베리파이를 이용한 Modbus TCP 기반 태양광 발전소 모니터링 시스템 (Modbus TCP based Solar Power Plant Monitoring System using Raspberry Pi)

  • 박진환;김창복
    • 한국항행학회논문지
    • /
    • 제24권6호
    • /
    • pp.620-626
    • /
    • 2020
  • 본 연구는 IOT 장비인 라즈베리파이를 마스터(master)로 이용하고 인버터를 슬레이브(slave)로 하여 모드버스 TCP 통신을 기반한 태양광 발전 모니터링 시스템을 제안하였다. 본 모델은 라즈베리파이에 다양한 센서를 추가하여 태양광 발전소의 모니터링에 필요한 정보를 추가하였으며, 실시간 발전량 예측을 통해 발전량 예측과 모니터링 정보를 스마트 폰으로 송신하였다. 또한, 서버에 태양광 발전소에서 지속해서 생성되는 정보를 빅데이터로 구축하였으며, 발전량 예측을 위한 딥러닝 모델을 학습하여 갱신하였다. 연구 결과로서 인버터에서 라즈베리파이로 모드버스 TCP 기반으로 안정적인 통신이 가능하였고, 라즈베리파이에서 학습된 딥러닝 모델로 실시간 예측이 가능하였다. 서버는 빅데이터로 다양한 딥러닝 모델 학습이 가능하였으며, LSTM이 학습 오차 0.0069, 테스트 오차 0.0075, RMSE 0.0866 등으로 가장 좋은 오차를 보임을 확인하였다. 본 모델은 다양한 제조사의 인버터에 대해서 보다 간단하고 편리하며 발전량을 예측할 수 있는 실시간 모니터링 시스템 구현이 가능함을 제시하였다.

전력선 통신 시스템을 위한 머신러닝 기반의 원신호 예측 기법 (Machine Learning-Based Signal Prediction Method for Power Line Communication Systems)

  • 선영규;심이삭;홍승관;김진영
    • 한국위성정보통신학회논문지
    • /
    • 제12권3호
    • /
    • pp.74-79
    • /
    • 2017
  • 본 논문에서는 머신러닝 알고리즘 중 하나인 다층 퍼셉트론을 기반으로 전력선통신 시스템에서의 수신 신호를 이용하여 송신단에서 전송한 원신호를 예측하는 시스템 모델을 제안한다. 전력망을 활용한 통신 방식을 사용하는 전력선통신 시스템은 일반적인 통신설로를 활용하는 통신 방식에 비해 잡음이 많다. 이 때문에 전력선통신 시스템의 성능이 저하가 되는 문제가 발생한다. 이를 해결하기 위해 본 논문에서 제안하는 통신 시스템 모델을 이용하면 원신호 예측을 통해 잡음의 영향이 최소화되어 전력선통신 시스템의 성능저하를 완화시킨다. 본 논문에서는 제안한 통신 시스템 모델을 백색 잡음 환경에 적용하여 시뮬레이션을 해봄으로써 원신호가 예측 되는지를 입증한다.

Program development and preliminary CHF characteristics analysis for natural circulation loop under moving condition

  • Gui, Minyang;Tian, Wenxi;Wu, Di;Chen, Ronghua;Su, G.H.;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.446-454
    • /
    • 2021
  • Critical heat flux (CHF) has traditionally been evaluated using look-up tables or empirical correlations for nuclear power plants. However, under complex moving condition, it is necessary to reconsider the CHF characteristics since the conventional CHF prediction methods would no longer be applicable. In this paper, the additional forces caused by motions have been added to the annular film dryout (AFD) mechanistic model to investigate the effect of moving condition on CHF. Moreover, a theoretical model of the natural circulation loop with additional forces is established to reflect the natural circulation characteristics of the loop system. By coupling the system loop with the AFD mechanistic model, a CHF prediction program called NACOM for natural circulation loop under moving condition is developed. The effects of three operating conditions, namely stationary, inclination and rolling, on the CHF of the loop are then analyzed. It can be clearly seen that the moving condition has an adverse effect on the CHF in the natural circulation system. For the calculation parameters in this paper, the CHF can be reduced by 25% compared with the static value, which indicates that it is important to consider the effects of moving condition to retain adequate safety margin in subsequent thermal-hydraulic designs.

인공지능 기반 전력량예측 기법의 비교 (Comparison of Power Consumption Prediction Scheme Based on Artificial Intelligence)

  • 이동구;선영규;김수현;심이삭;황유민;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권4호
    • /
    • pp.161-167
    • /
    • 2019
  • 최근 안정적인 전력수급과 급증하는 전력수요를 예측하는 수요예측 기술에 대한 관심과 실시간 전력측정을 가능하게 하는 스마트 미터기의 보급의 증대로 인해 수요예측 기법에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 실제 측정된 가정의 전력 사용량 데이터를 학습하여 예측결과를 출력하는 딥 러닝 예측모델 실험을 진행한다. 그리고 본 연구에서는 데이터 전처리 기법으로써 이동평균법을 도입하였다. 실제로 측정된 데이터를 학습한 모델의 예측량과 실제 전력 측정량을 비교한다. 이 예측량을 통해서 전력공급 예비율을 낮춰 사용되지 않고 낭비되는 예비전력을 줄일 수 있는 가능성을 제시한다. 또한 본 논문에서는 같은 데이터, 같은 실험 파라미터를 토대로 세 종류의 기법: 다층퍼셉트론(Multi Layer Perceptron, MLP), 순환신경망(Recurrent Neural Network, RNN), Long Short Term Memory(LSTM)에 대해 실험을 진행하여 성능을 평가한다. 성능평가는 MSE(Mean Squared Error), MAE(Mean Absolute Error)의 기준으로 성능평가를 진행했다.

오픈소스 기반 지도 서비스를 이용한 딥러닝 실시간 가상 전력수요 예측 가시화 웹 시스템 (Development of Data Visualized Web System for Virtual Power Forecasting based on Open Sources based Location Services using Deep Learning)

  • 이정휘;김동근
    • 한국정보통신학회논문지
    • /
    • 제25권8호
    • /
    • pp.1005-1012
    • /
    • 2021
  • 최근 웹에서 지도(Map)를 이용한 Location based Services 기반의 다양한 위치정보시스템 활용이 점점 확대되고 있으며 에너지 절약을 위한 대안으로 전력 수요 현황을 실시간으로 확인할 수 있는 모니터링 시스템의 필요성이 요구되고 있다. 본 연구에서는 딥러닝과 같은 기계학습을 이용하여 전력 수요 데이터의 특성을 분석하고 예측하는 모듈을 개발하여 지역 단위별 전력 에너지 사용 현황과 예측 추세를 실시간으로 확인할 수 있는 오픈소스 기반 지도 서비스를 이용한 딥러닝 실시간 가상 전력수요예측 웹 시스템을 개발하였다. 특히 제안한 시스템은 LSTM 딥러닝 모델을 이용하여 지역적으로 전력 수요량과 예측 분석이 실시간으로 가능하고 분석된 정보를 가시화하여 제공한다. 향후 제안된 시스템을 통해 지역별 에너지의 수급 및 예측 현황을 확인하고 분석하는데 활용될 수 있을 뿐만 아니라 다른 산업 에너지에도 적용될 수 있을 것이다.

밭농업용 다목적 플랫폼의 견인동력 및 구동토크 예측을 위한 시뮬레이션 모델 개발 및 검증 (Development and Validation of Simulation Model for Traction Power and Driving Torque Prediction of Upland Multipurpose Platform)

  • 전현호;백승민;백승윤;홍이수;김택진;최용;김영근;이상희;김용주
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권1호
    • /
    • pp.16-26
    • /
    • 2023
  • Although the upland field area of Korea is high as 44.8%, the platform optimized for the upland field is insufficient. It is necessary to develop an optimized platform for the upland field because the upland field environment is an irregular environment with many slopes. In addition, due to the characteristic of agricultural operations, the traction power and torque of the platform have to be sufficient. Therefore, in this study, a simulation model that can predict the traction power and driving torque of a crawler-type platform for the upland field was developed and validated using the specifications of the crawler platform. The simulation model was developed using Amesim (19.1, Siemens, Germany). The development of the model was conducted using the specifications of the platform. A measurement system was developed to validate the simulation model. The traction power data of the simulation model was validated with the traction force and vehicle speed. The driving torque data of the simulation model was validated with the torque of the sprocket on the crawler system. As a result of the analysis, the error between measurement and simulation results occurred within 10%, and it was determined that the traction power and driving torque prediction of the crawler platform using this model was possible.

메탄올-물 혼합연료 기관에 관한 연구

  • 김응서;정진은
    • 오토저널
    • /
    • 제3권3호
    • /
    • pp.49-57
    • /
    • 1981
  • A cycle simulation of 4 cycle spark ignition engine using methanol-water blend as a fuel has been developed for study of prediction of power, specific fuel consumption, mean effective pressure and thermal efficiency. One-dimensional flow model for intake process and thermodynamic model for combustion process were selected. After, performance test was made with conventional engine which was modified in consideration of fuel properties. And computational results by simulation have been compared with experimental results. As the agreement between computational and experimental results was good, prediction of engine performance by was possible.

  • PDF

부품부하분석을 이용한 발전소 제어모듈의 신뢰도 예측 (Parts Stresss Analysis for Reliability Prediction of Control Module in Plant)

  • 김대웅;강희정
    • 에너지공학
    • /
    • 제4권3호
    • /
    • pp.338-343
    • /
    • 1995
  • The objective of this study is to predict the reliability of the electronic control module at ROD control system in nuclear power plant. Maintaining of the reliability is important issue in the complext system like nuclear plower plant, military equipment, satelite system, etc., because the failure of reliability brings etravagant economic loss and deteriorates public acceptance. In addition to the prediction of reliability, the fators affect the reliability including operating condition, environment, temperature and quality factors were analyzed and simulated. The result shows that the quality factors are more critical for the higher reliability than other two factors.

  • PDF

UPS inverter의 2차 데드비트 응답을 위한 반복부하예측기법 (Repetitive Load Prediction for Second Order Deadbeat Response Applied to UPS Inverter)

  • 최재호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.339-342
    • /
    • 2000
  • Repetitive Load Prediction is proposed for the UPS inverter application of the second order deadbeat controller which is robust against the calculation time delay and the parameter variation and which gets fast response against the load variation. The proposed technique predicts the load current ahead of two sampling time using that the load current is periodic. This is effective under nonlinear load condition. The proposed technique is derived theoretically and verified through simulation and experimental result.

  • PDF